		DEPARTI	MENT OF COMPU	TER SCIENCE		
Torren	Course Code:	10CT21	Programme:	B.Sc. Computer Science	CIA:	Ι
	Date:	20.01.2023	Part:	III	Semester:	II
	Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50
	Study Compor	ient:	Core Course			
	Course Title:	OBJECT OR	RIENTED PROGRA	AMMING WITH C-	++	

SECTION – A (Remembering)

Answer	• ALL the Questi	ions:		(10 X 1 = 10 M)	larks)
1	OOP language su	pports object based featur	es, inheritance and	•	CO1
	A. Encapsulation	B. Polymorphism.	C. Object identity.	D. Functions	
2	A structure defin	es atype.			CO1
	A. class.	B. pointers.	C. arrays.	D. variables.	
3	Which of the foll	owing is a logical operator	r?		CO1
	A. ++	B.?:	C. ==	D. &&	
4	Α	is an instance of class	5.		CO1
	A. code.	B. object.	C. variable.	D. pointer	
5	An	_ is a real world entity			CO1
	A. procedure	B. object	C. class	D. function	
6	main() is a	_ function.			CO1
	A. built in.	B. user defined.	C. constant.	D. derived.	
7	Which of the foll	owing is not a correct data	a type?		CO1
	A. Float.	B. Real.	C. Int.	D. Double.	
8	function	on is a function that calls it	tself repeatedly.		CO2
	A. Friend.	B. Inline.	C. Recursive.	D. Member.	
9	Which of the foll	owing is a correct commen	nt?		CO2
	A. */ Comments	*/. B. ** Comment **.	C. /* Comment *	² /. D. { Comment }.	
10	is th	ne newline character.			CO2
	A. ∖t	B. \b	C. \a	D. \n	

SECTION – B (Remembering)

1

Answei	r any FIVE Questions:	(5 X 2 = 10 Marks)
11	List out the type of data type	C01
12	Write any 4 type of operator	C01
13	Define constants	C01
14	Write any 10 keyword in C++	C01
15	Define Variables	C01
16	Define function	CO2
17	Write the syntax of function	CO2

SECTION – C (Understanding)

.....

40.3.5

Answer	any THREE Questions:	(3 X 6= 18 Marks)
18	Explain the Features of Object oriented Programming	CO1
19	Difference between C and C++	CO1
20	Explain Keywords, Identifier and Data types	CO1
21	Explain about functions	CO2
22	Illustrate Inline functions	CO2

SECTION – D (Applying)

Answer	any ONE Question:	(1X 12= 12 Marks)
23	Explain about the basic concepts of object oriented programming	CO1
24	Explain about the call by reference in function.	CO2

			DEPART	MENT OF COMPU	TER SCIENCE		
LITTIC	T	Course Code:	10CT22	Programme:	B.Sc. Computer Science	CIA:	I
		Date:	24.01.2023	Part:	III	Semester:	II
		Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50
HAND	HART HEAD	Study Compo	nent:	Core Course		i	
		Course Title:	DATA STRU	CTURE			
		1	I SECI	TION A (Domombor	ing)		
Ans	wer A	LL the Questions	SECI	1011 – A (Kemeniber)	ing)	(10 X 1 = 10 Ma	rks)
1	r	refers to a value or a	set of values or f	acts			110)
-	a) Dat	tabase b) Data	c) Table d	l) Record		(C O 1
2		is a collection of fiel	d values of a give	en entity			004
	a) Fil	e b) Data Iter	n c) Record	d) Entity Set		(201
3		refers to a single uni	t of value in a rec	cord			001
	a) Rel	lation b) Tuples	c) Data Iter	m d) Objects		, i	.01
4		is storing of data ele	ments based on r	elationship, for better o	organization and easy s	storage of data.	CO1
	a) DB	b) Data Mi	ning c) Data structure	d) File	,	201
5	Whicl	h one of these is a N	on-Primitive data	a structure		(CO1
	a) inte	eger b) float	c) ch	ar d) stack			
6	<u> </u>	_ is a data structure t	hat can hold a fix	ted number of items wh	ich are similar in data	type	C O 1
-	a) Gra	aph b) Linked	l list c) l	Linear Array d)	Integer		
7	1 he li	ndex can start from () to d) 5			(C O1
o	a) 10 If a L	D) Z	c) n d) 5	the maximum value of	the index is		
ð		h = 0 $h = 0$ $h = 0$	y elements then	the maximum value of		(C O2
0	a = 0	0)9 $(0)7$ (0)) 0 which represents 1	hierarchical relationshi	n between individual		
,	a) dat	a items b) fields	c) nodes	d) linked list		· (C O2
10	Oueue	e is a Li	st.	d) miked list			
10	a) L	LIFO b) Top c) FIFO d) None			(C O2
	,	, I	SECT	TION – B (Remember	ing)		
Ans	swer ar	ny FIVE Questions:	:	,		(5 X 2 = 10 Ma	rks)
11	Give	any two uses of a da	ta structure?			(C O 1
12	Give	any two examples fo	or Non Linear No	n primitive data structu	ire?	(C O1
13	Defin	e a Record?				(C O1
14	Defin	e a data structure?				(C O1
15	List th	ne attributes of a Lin	ear Array?			(C O 1
15	Distin	iguish searching and	sorting operation	n with suitable example	es for each?	(CO2
17	Defin	e Binary search?			•	(202
A		TIDEE Ouestie	SECI	TON – C (Understand	ling)	(2 V (_ 19 Ma	ml-a)
Alls 18	Classi	ify the organization	IIS: of datastructures			$(3 \land 0 = 16 Ma$	гкs) СО1
10	Sumn	hy the organization of an arize the representation of the second s	tion of Linear Ar	rays in memory			CO1
20	Critic	ally analyze the imp	lementation of a	linear array.			CO1
20	Discu	ss on the characteris	stics of tree datast	tructure.		(CO2
22	Brief	a note types of sortin	ng used in an arra	ły.		(C O2
-			SE	CTION – D (Applying	g)		
Ans	swer ar	ny ONE Question:		· II V C	-	(1X 12= 12 Ma	rks)
23	Expla	in in detail types and	d characteristics of	of datastructure		(C O1
24	Expla	in in detail insertion	and deletion ope	eration in a Linear array	using a C program	(C O2

	VIVEKANANDA COLLEGE, TIRUVEDAKAM WEST - 625234									
	DEPARTMENT OF COMPUTER SCIENCE									
	Course Code:	10AE21	Programme:	B.Sc. Computer Science	CIA:	Ι				
	Date:	25.01.2023	Part:	III	Semester:	II				
	Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50				
CANDULITARI INTERNA	Study Compo	nent:	Ability Enhancen	nent Course						
	Course Title:	STATISTICS	S AND NUMERICA	AL METHODS						
	·	·								

SECTION – A (Remembering)

Answer	ALL the Q	Question	5:			(10 X 1 = 10 N)	Marks)
1			used to i	nterpola	te nearer	to starting value of table	CO4
	a) Newton	forwar	d b) N	ewton b	ackward	c) Guass forward and backward	
	d) all						
2			used to i	nterpola	te nearer	to end value of table	CO4
	a) Newton	forwar	d b) N	ewton b	ackward	c) Guass forward and backward	
	d) all						
3		fo	rmulae us	sed for e	qual inter	rval	CO4
	a) Newton	forwar	d b) N	ewton b	ackward	c) both a and b	
	d) none						
4	To implem	ent Guass	s Jordan m	ethod ma	atrix reduc	ced to	CO4
	a) upper tri	angular n	natrix b) lower t	riangular	matrix c) unit or diagonal matrix d)none	
5	To implem	ent Guass	s Eliminat	ion metho	od matrix	reduced to	CO4
	a) upper tri	angular n	natrix b) lower t	riangular	matrix c) unit or diagonal matrix d)none	
6	To implen	nent inte	rpolate h	should b	be		CO4
	a) constan	t b)	not equa	l c) r	natrix	d) none	
7	To implem	ent Guass	s Eliminat	ion metho	od matrix	should be	CO4
	a) square m	natrix b) 3X4 ma	trix c)	diagonal	matrix d)none	
8	Guass forv	ward and	backwar	d interpo	olation de	erived from	CO5
	a) Newton	forwar	d b) Gu	ass forw	vard and	backward c) Laplace Everett	
	d) Newton	n's cote					
9		fo	rmulae us	sed for C	Central ta	ble of value	CO5
	a) Newton	forwar	d b) N	ewton b	ackward	c) Gauss forward & backward	
	d) none						
10	The order	of the m	atrix B=	[1 2 5 7	5] is		CO5
	A. 1*1 B.	1*2 C. 1	*5 D. 1*	3			
				SECTI	ON – B	(Remembering)	
Answer	any FIVE	Questio	ns:			(5 X 2 = 10 N)	Marks)
11	Define int	erpolatic	n				CO4
12	Write proc	cedure G	auss-Elin	nination	method		CO4
13	Define Sq	uare Ma	rix				CO4
14	Write a fo	rmula of	Newton	backwai	d interpo	lation with v	CO4
15					Ĩ	Can you apply interpolation for the problem	CO4
	X	0	1	2	3	tell the reason	

16 Define Central interpolation

5

Y

17 Write a formula of Gauss forward interpolation

6

4

3

CO5 **CO5**

SECTION – C (Understanding)

Answer	any THR	EE Que	stions:						(3	3 X 6= 18	Marks)
18	Solve the	system	by Gauss- J	ordan E	Elimination	method	l x - 2y +	z =0; 2x	+ y - 32	z = 5;	CO4
	4x - 7y + 2	z =-1									
19	. Find a p	olynomi	al of degree	e two w	hich takes t	he valu	es				CO4
	Χ	0	1	2	3	4	5	6	7		
	Y	1	2	4	7	11	16	22	29		
20							3	0 2	1		CO4
	Find the i	nverse c	of by Gaussi	ian Elin	nination Me	ethod us	A=2	0 -	2		
							C	1 1			
21	Apply Ga	uss forv	vard formul	a and es	stimate f(3.	5) from	the follo	wing tab	le		CO5
	Х		2		3		4		5]
	Y=f(x)		2.629		3.454		4.784		6.986		1
22	Apply Ga	uss bacl	ward form	ula and	estimate√1	12516 f	rom the f	ollowing	, table		CO5
	Х		$\sqrt{12500}$	1	$\sqrt{12510}$	$\sqrt{1}$	2520	$\sqrt{12}$	530		
	Y		111.803399	111	1.848111	111.8	92805	111.937	7483		
				SEC	ΓΙΟN – D	(Applyi	ng)				
Answer	any ONE	E Questi	on:						(1	X 12= 12	Marks)
23	Find x=4	6 and x	=63 from th	e follov	ving data a	nd expre	ess in x te	erms			CO4

This x=40 and x=05 from the following data and express in x terms								
Х	45	50	55	60	65			
Y	114.84	96.16	83.32	74.48	68.48			

24	. From the following data	find f(3.75) using	Gauss's forward formula
----	---------------------------	--------------------	-------------------------

Х	2.5	3.0	3.5	4.0	4.5	5.0
Y	24.145	22.043	20.225	18.644	17.262	16.047

CO5

		VIVEKAN	IANDA COLL	EGE, TIRUVEDAK	KAM WEST - 625	234	
			DEPART	MENT OF COMPU	TER SCIENCE		
Lawrence		Course Code:	10CT41	Programme:	B.Sc. Computer Science	CIA:	I
-		Date:	20.01.2023	Part:	III	Semester:	IV
		Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50
HANDHE	ARTHEAD	Study Compo	nent:	Core Course			1
		Course Title:	RELATIONA	L DATABASE MANA	AGEMENT SYSTEM	Л	
			SEC	FION A (Domombori	n a)		
Ans	wer AI	L the Ouestions:	SEC.	I ION – A (Kemenideri	lig <i>)</i>	(10 X 1 = 10 Ma	rks)
1	A rela	tional database consi	sts of a collection	of		[`]	
	a) Tab	les b) Fields	c) Records	d) Keys			201
2	A coll	ection of conceptual	tool for describing	g data, its relationships, a	semantics and constrain	$\frac{1}{1}$ ts is called (C O1
3	The al	vility to modify a sch	ema definition in	a level without affecting	a schema definition in	another level is	
U	called	a) Data insta	ance b) Data M	odel c) Data structure	e d) Data independe	nce	C O 1
4		_ key is used to acces	ss the attributes of	f an entity set			CO1
	a) For	eign b) candidate	c) Primary	d) Reference		,	201
5	r	efers to a single unit	of value in a reco	rd		(C O 1
(a) Rela	ation b) Tuples	c) Data Iter	n d) Objects			
0	a) Obi	ect based b) Reco	rd based c) Ne	twork based d) Physic	cal based	(C O1
7	u) 00j	is a collection of	operations that p	erform a single logical f	unction in a database a	oplication	~~ 1
	a) Que	b) Transaction	c) Primary Key	d) Referential integr	rity	(CO1
8		translates DML st	atements in a que	ry language into low lev	el instructions so that c	query evaluation	
	engine	understands it.				(C O2
0	a) DD	L interpreter b) DN	IL compiler c)	File Manager d) Data	Dictionary	4 - 44 - 11 4 -	
9	For ea	ch attribute of a relat	(100, there is a set)	d) Schema	ed the of tha	t attribute.	C O2
10	The te	rm used to a	refer to a row.	u) Senema			ററാ
	a) Attı	ibute b) Tuple	c) Field	d) Instance		· · · · ·	202
			SECT	TION – B (Remember	ing)		• `
Ans	wer an	y FIVE Questions:	as of file process	ing system		(5 X 2 = 10 Ma)	rks)
11	Distin	ouish DDL and DM	T	nig system			CO1
12	Define	e a Record?	Ŀ				CO1
14	Define	e a Entity Set?				(CO1
15	List th	e types of attributes	used in E-R Mo	del?		(C O1
15	List th	e types of Query La	inguages?			(C O2
17	Give t	he expression for a	representing a qu	ery in Tuple relational	calculus?	(C O2
			SECT	ION – C (Understand	ling)		
Ans	wer an	y THREE Question	ns:			(3 X 6= 18 Ma	rks)
18	Classi	ty and brief a note of	on different abstra	action level of schema?	ah ama a	(
19 20	Critic	guish between phys.	ures of E R Mod	ata independence in a s	schema		
20 21	Discu	ss on any three oper	ations of relation	al algebra			CO2
22	Brief	a note roles of a data	abase administrat	or in an organization?		(CO2
_	·		SE	CTION – D (Applying	g)		
Ans	wer an	y ONE Question:		·	-	(1X 12= 12 Ma	rks)
23	Expla	in in detail types and	d characteristics of	of object based data mo	dels	(C O1
24	Expla	in in detail overall st	tructure of a data	base		(C O2

	VIVEKAN	IANDA COLL	EGE, TIRUVEDAI	KAM WEST - 625	234	
		DEPART	MENT OF COMPU	JTER SCIENCE		
Land Land	Course Code:	10CT42	Programme:	B.Sc. Computer Science	CIA:	Ι
	Date:	24.01.2023	Part:	III	Semester:	IV
	Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50
HANDHEARTHE	Study Compo	nent:	Core Course	<u>.</u>		
	Course Title:	DOT NET P	ROGRAMMING			.i
	1	SECT				
Answe	er ALL the Questions	. SEC I	ION – A (Kemember	ring)	(10 X 1 – 10 Marl	ke)
1	Who developed Visu	al Basic?			$(10 \times 1 = 10 \text{ mar})$	01
•	a) Symantec b) A	Ashton-Tate	c) Microsoft	d) Sybase	C.	
2	Which of the followir	ng extension is u	sed to represent the p	oiect file in Visual B	asic? C	01
-	a) .vbp b) .v	vh	c) .cls	d) .vvb		.
3	Which of the following	ng applications c	an be developed using	visual Basic tool?	С	01
-	a) Graphical User Inte	erface b) Real-time		-	-
	c) Character User Inte	erface d) All of the mentioned	1		
4	In the Visual Basic ap	oplication, which	of the following are	listed in a properties	window? Co	01
	a) Items b)	Values	c) Attributes	d) Objects		
5	Which of the following	ng displays the li	st of projects containe	ed in the Visual Basic	current C	01
	solution?					
	a) List Window		b) Project Window			
	c) Catalogue Window	/	d) Solution Explorer V	Window		
6	Which of the following	ng instruction tel	ls the computer to clo	se the current form ir	Visual Basic? C	01
	a) This.Close() b)) Me.Close()	c) Close.this()	d) Close()		
7	Which of the following	ng returns a valu	e after performing its	specific task in Visua	l Basic? Co	01
	a) Structure b) Sub block	c) Sub procedure	d) Function Proce	dure	
8	Which statement prov	vides an alternate	e way of displaying in	formation to the user	? Co	02
_	a) InputBox() b) N	MsgBox. c)A	lertWindow() d)	PromptUser().		
9	Which control is an e	xample of an ob	ject in VB.NET?		C	02
	a) Button b) Lab	el	c) Textbox	d) All of the above	~	~ •
10	The CancelButton pro	operty belongs to	o which object?	5	C	02
	a) Button b) Form	c) Label d) Text	Box		
		SECI	10N - B (Remember	ring)		
Answe	er any FIVE Question	IS:			(5 X Z = 10 Mar)	KS)
11	What do you maan by					
12	What is Variable?	Y CLR?				
15	Define Dete Types in	VP not				01
14	What is if statement w	v D.llet.				01
15	Define label control	with example:				$\frac{01}{02}$
10	Explain about Textbo	ox control				0^2
1/	Explain about Textoo	SFCT	ION – C (Understan	ding)		02
Answe	er any THREE Questi	ions [.]		unig)	(3 X 6= 18 Marl	ks)
18	Explain the Operator	in VB.NET pros	oram		C	01
19	Discusses about the V	While and Do wh	ile Statement		C	01
20	Write a VB.NET pros	gram Prime num	ber Generation.		C	01
21	Write a Login form p	rogram using vb	.net windows applicat	ion.	C	02
22	Explain the Group Bo	ox control with e	example.		C	02
	. 1	SE	CTION – D (Applyin	g)	-	
Answe	er any ONE Question	:	× 11 J	<u> </u>	(1X 12= 12 Marl	ks)

		-	
23	Explain about the Dot Net Framework components with diagram.		CO1
24	Discuses about Radio button, Check box and picture box with example.		CO2

	VIVEKAN	IANDA COLL	EGE, TIRUV	EDA	KAM WES	T - 6252	34		
		DEPART	MENT OF C	OMPU	TER SCI	ENCE			<u></u>
Farmer Will	Course Code:	10AE41	Programm	e:	B.Sc. Computer Science		CIA:		I
	Date:	25.01.2023	Part:		III		Semest	er:	IV
	Duration:	2 Hours	Academic	Year:	2022-23		Max. Ma	arks:	50
LIEARU	Study Compo	nent:	Ability Enh	ancen	nent Cou	se			
	Course Title:	NUMERICA	L METHODS	S FOR	COMPU	TER SCII	ENCE		
	·	SECT		aambar	ing)				
Answei	• ALL the Question	SEC I	10n - A (Keil	lember	ing)	(1	0 X 1 – 10	Marko	e)
1	ALL the Question	used to interno	late nearer to st	artino v	value of tabl	(۱ ۹	0 A 1 – 10		s) 12
1	a) Newton forwar	$\frac{1}{2}$ d b) Newton	backward	c) G	uass forwar	d and back	ward	co	
	d) all		backward	0)0	uuss 101 wu	u and back	i waru		
2	d) un	used to interno	late nearer to er	nd value	e of table			CO	12
-	a) Newton forwar	d b) Newton	backward	c) G	uass forwai	d and back	ward	00	-
	d) all	,		•) 0					
3	fo	rmulae used for	equal interval					CO	2
-	a) Newton forwar	d b) Newton	backward	c) bo	oth a and b	d) nor	ne		
4	ÉY ₀ =	,		,		,		CO	02
	a) Y_{-1} b) y_0 c) y	$(1 d)y_2$							
5	How we find the n	nissing value use	e of					CO	2
	a) Δ and E	b) Δ and F	c) Δ and G	d)∆	and h				
6	To implement inte	rpolate h should	be					CO	2
	a) constant b)	not equal c)) matrix d) ı	none					
7	To implement Guass	s Elimination met	hod matrix shou	ld be				CO	2
	a) square matrix b	b) 3X4 matrix c	c) diagonal matr	rix d)ı	none				
8	Guass forward and	backward inter	polation derive	d from_			_	CO	13
	a) Newton forwar	d b) Guass for	rward and back	ward	(c) Laplace	Everett		
0	d) Newton's cote	1 10	C 1 1 1	C 1				00	
9		rmulae used for	Central table of	of value	c c	101 1	1	CO	3
	a) Newton Torwar	a b) Newton	backward	c) G	auss forwai	a & backw	/ard		
10	u) none The order of the m	otriv D_ [1 2 5 '	7 51 ia					CO	2
10	1 = 0 = 0 = 0 = 0	$1 \times 5 D 1 \times 3$	/ 5] 18	_ ·				CO	5
	A. 1 1 D. 1 2 C. 1	SFCI	TON _ R (Ren	nemher	ring)				
Answei	any FIVE Questio	ns:	D (Kell			($5 \ge 2 = 10$	Marko	s)
11	Define interpolatic	n).				(0 11 2 - 10	CO)) 12
12	Write procedure G	auss-Eliminatio	n method					CO	2
13	Define Square Ma	trix						CO	2
14	Write a formula of	Newton backw	ard interpolatio	n with	v			CO	2
15			*				Can	CO	2
	X 0	1 2	3 4		5 6	7	you		
	Y 1	2 4	7 1	1	16 2	2 29	appl		

16 Define Central interpolation

17 Write a formula of Gauss forward interpolation

CO3 CO3

SECTION – C (Understanding)

Answer any **THREE** Questions: (3 X 6= 18 Marks) **18** Solve the system by Gauss- Jordan Elimination method x + 2y + 2z = 7; 3x + 2y + 4z = 13; **CO2** 4x + 3y + 2z = 819 . Find a polynomial of degree two which takes the values **CO2** 0 5 7 Х 1 2 3 4 6 Y 1 2 7 22 4 11 16 29 2 1 1 20 **CO2** Find the inverse of by Gaussian elimination Method using A=32 3 1 4 9 Apply Gauss forward formula and estimate f(3.5) from the following table **CO3** 21 3 Х 2 4 5 Y=f(x)2.629 3.454 4.784 6.986 Apply Gauss backward formula and estimate $\sqrt{12516}$ from the following table **CO3** 22 Х $\sqrt{12500}$ √12510 $\sqrt{12520}$ $\sqrt{12530}$ Y 111.803399 111.848111 111.892805 111.937483 **SECTION – D (Applying)** Answer any **ONE** Question: (1X 12= 12 Marks)

23 Find x=46 and x=63 from the following data and express in x terms

CO2

CO3

Х	45	50	55	60	65
Y	114.84	96.16	83.32	74.48	68.48

24 i)Find f(25) given f(20)=14, f(24)=32, f(28)=35 and f(32)=40 using Gauss forward formula

(ii) using Gauss backward formula find the population of 1936 given that

() 0			1 1	υ		
Year	1901	1911	1921	1931	1941	1951
Population(1000)	12	15	20	27	39	52

		VIVEKAN	IANDA COLL	EGE, TIRUVEDAK	KAM WEST - 625	234	
			DEPART	MENT OF COMPU	TER SCIENCE		
		Course Code:	10CT61	Programme:	B.Sc. Computer Science	CIA:	Ι
		Date:	24.01.2023	Part:	III	Semester:	VI
		Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50
HANDHE	ARTHEAD	Study Compo	nent:	Core			•
		Course Title		AMMING			
		course ritie.	WEB FROGR	AMIMING			
			SECI	TION – A (Remember	ing)		
Ans	wer A	LL the Questions:				(10 X 1 = 10 Ma)	rks)
1	An IS	P obtains a permane	ent internet conne	ction through its	_		C O 1
•	a) TC	P/IP b) Pipeline	c) Domain ser	ver d) Gateway			
2	-) C	is a provider of	services in an initial $(2) \cap (2)$	ternet			C O1
2	a) Ser	ver b) Clients	C = OS = O = ON	S	ad to the alignt's requi		
3	a) W/	WW software b) O	wate called	so that it can respon	ser software d) Web	Server software	C O1
4	<i>a)</i> •••	is used to estab	lish a connection	between a web client a	and a web server inter	net	
-	a) we	h browser b) TCP	/IP c) FTP	d) HTML			C O1
5	<i>u)</i>	is a governing h	body used to regi	ster and issue IP addres	sses to the Internet Ser	evers in the web.	C O 1
6		is used to con	nnect a local com	puter with a remote co	mputer		~~ .
	a) FT	P b) SMTP c) TELNET d) H	HTTP	L .		CO1
7	Whick	h of the HTML tag d	loes not require to	erminator tag?			001
	a) <u< th=""><th>> b) $<$ br$>$ c) $<$ b</th><th>>> d) </th><th></th><th></th><th></th><th>201</th></u<>	> b) $<$ br $>$ c) $<$ b	>> d) 				201
8	Comr	nents in HTML shou	ıld be given using	<u> </u>			ററാ
	a) -</th <th>- and <math>> b) <!-- a</th--><th>and $!>$ c) <math><!--a</math--></math></th><th>and –"" d) //</th><th></th><th></th><th>202</th></math></th>	- and $> b) and !> c) and –"" d) //202$	and $!>$ c) $$	and –"" d) //			202
9		tag is used before b	beginning of the p	paragraph text			CO2
	a) <te< th=""><th>extarea> b) <sup< th=""><th>p> c)</th><th>d) <h1></h1></th><th></th><th></th><th></th></sup<></th></te<>	extarea> b) <sup< th=""><th>p> c)</th><th>d) <h1></h1></th><th></th><th></th><th></th></sup<>	p> c)	d) <h1></h1>			
10	When	a user views a web	page containing.	JavaScript, which mach	nine will execute the J	avaScript?	C O2
	a) Cli	ent b) Server	c) Java Web Ser	ver d) DNS	• 、		
			SECI	TON – B (Remember)	ing)		• `
Ans	wer ar	iy FIVE Questions:	: ain and mintural da	main in internat?		(5 X 2 = 10 Ma)	rks)
11	Who	is the father of Inter	and who deve	loped HTML?			
12	Defin	e Internet gateway	liet and who deve	loped III ML?			
13	Give	the roles of InterNIC	19				CO1
15	Give	the lexical structure	of HTML Web p	age?			CO1
15	What	will be the result of	the following cod	de in JavaScript given l	below?		
	var =	"Mercedes"+16+4 ?)	1 0			CO2
17	Give	the syntax in JavaSc	ript to give an ou	tput "I UNDERSTOOI	D JAVASCRIPT".		C O2
			SECT	ION – C (Understand	ling)		
Ans	wer ar	ny THREE Questio	ns:			(3 X 6= 18 Ma	rks)
18	Discu	ss of the characterist	tics of a Server an	nd Client in internet?			C O1
19	Sumn	narize on the concep	t of IP address an	d its significance in Int	ternet?		C O1
20	Discu	ss on the types of H'	TML tags?				C O1
21	Discu	ss on the types of te	xt styles in HTM				CO2
22	Brief	a note the advantage	es of using JavaSo	cript in web pages?	-)		02
A =-			SE	CTION – D (Applying	S)	(12 13 13 14]-~`
Ans	wer ar	in in detail the prese	of communication	tion between the Web	Client and Wah Same	(1X 12 = 12 Ma)	rks)
23 24	Expla	in in detail structure	of an HTML wa	h page with Involution	in it?	1:	
4 - t	плріа			o page will savasellpt	111 16.		JU4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	DEPARTMENT OF COMPUTER SCIENCE								
	Course Code:	10EP6A	Programme:	B.Sc. Computer Science	CIA:	Ι			
	Date:	25.01.2023	Part:	III	Semester:	VI			
	Duration:	2 Hours	Academic Year:	2022-23	Max. Marks:	50			
HANDHEARTHEAD	Study Component:		Elective						
	<b>Course Title:</b>	SOFTWARE	TESTING						

## **SECTION – A (Remembering)**

Answer	ALL the Questions: (1	0 X 1 = 10 Marks)
1	White Box techniques are also classified as	CO1
	a) Design based testing b) Structural testing	
	c) Error guessing technique d) None of the mentioned	
2	Which of the following is/are White box technique?	CO1
	a) Statement Testing b) Decision Testing	
•	c) Condition Coverage d) All of the mentioned	001
3	Identify the term which is not related testing	COI
	a) failure b) error c) test case d)test bot	001
4	Identify incorrect testing technique	COI
5	a) unit testing b) system testing c) collaboration testing d) function testing By whom unit testing is done?	CO1
5	a) customer b) developer c) customer d) none	COI
6	Identify the stage in which test cases are designed?	CO1
Ū	a)test planning b) test configuration c) test strategy d) none	001
7	In Which of the following situation defects will arise?	CO1
,	a)No knowledge of system b)System is used in wrong way c) May have code	l wrongly
	d)All the above	a mongry
8	A step by step instruction used to solve a problem is known as	CO2
Ū	a) Sequential structure b) A List c) A plan d) An Algorithm	001
9	In which of the following categories can White Box techniques be classified.	CO2
-	a) design based testing b) structural testing c) Error guessing technique	d) none
10	Identify the incorrect white box technique	CO2
	a) statement testing b) path testing c)data flow testing d) data transition testing	
	<b>SECTION – B (Remembering)</b>	
Answer	r any <b>FIVE</b> Questions: (	5 X 2 = 10 Marks)
11	Define Software	CO1
12	Define testing	CO1
13	What is test case	CO1
14	Define verification	CO1
15	Define validation	CO1
16	Define unit testing	CO2
17	Define Fault	CO2
	<b>SECTION – C (Understanding)</b>	
Answer	any <b>THREE</b> Questions:	(3 X 6= 18 Marks)
18	Explain about software quality attributes	COI
19	Write notes on objectives of testing	COI
20	Explain about different Test Levels	COL
21	List out tools of unit testing Write Short notes on LUnit framework	CO2
22		CO2
A	SECTION – D (Applying)	
Answer	Discuss shout testing activities in detail (	1X 12 = 12 Marks)
25	Discuss about testing activities in detail	
24		002
	<u>&amp;&amp;&amp;&amp;&amp;&amp;</u>	

	DEPARTMENT OF COMPUTER SCIENCE								
	Course Code:	10SB62	Programme:	B.Sc. Computer Science	CIA:	I			
	Date:	19.01.2023	Part:	IV	Semester:	VI			
	<b>Duration:</b>	1 Hour	Academic Year:	2022-23	Max. Marks:	25			
HAND HEART HEAD	Study Compor	nent:	Skill Based						
	<b>Course Title:</b>	CYBER SEC	URITY						
			SECTION – A						
Answer	ALL the Questions:				(5 X 1 = 5 Marks)	)			
1	Which of the follows	ing is a type of a	ntivirus program?		COI	l			
	A.Quick heal	B.McaFee	C. Kaspe	rsky D. All o	of the above				
2	In ethical hacking an	d cyber security	, there aret	ypes of scanning	COI	L			
	A. 1	B. 2	C.3	D.4					
3	Code Red is a type o	of			COI	L			
	A. An Antivirus Prog	gram B. A photo	editing software C. A	Computer Virus D	. None				
4	Which of the following	g is a tool for perf	orming footprinting und	letected?	CO2	2			
=	A. Whois search What is the payt stop t	B. Iraceroute	C. Ping sweep	D. Host scannin	ng				
5	A Scanning	B Enumeration	n C System h	acking D None					
		212							
			SECTION – B						
Answer	any <b>TWO</b> Questions	5			(2 X 2 = 4 Marks)	)			
6	Define Ethics	·		COL					
7	What is meant by Se	curity?			COL	L			
8	Define Foot Printing	DNC maganda							
9	List out the types of	DNS records.							
			SECTION – C						
Answer	any <b>ONE</b> Question:				(1 X 6= 6 Marks)	)			
10	Write about Ethical	Hacking and Cyl	ber Security		COI	L			
11	Describe about the I	Information Gath	nering Methodology		CO2	2			
			SECTION – D						
Answer	any <b>ONE</b> Question:			(1	1 X 10= 10 Marks)	)			
12	Explain about the Di	fferent Types of	Hacking Technologie	ès.	COI	L			
13	Explain the E-Mail T	racking Works.	- 0		CO2	2			