VIVEKANANDA COLLEGE

College with Potential for Excellence
Residential \& Autonomous - A Gurukula Institute of Life-Training Re-accredited (3rd Cycle) with 'A' Grade (CGPA 3.59 out of 4.00) by NAAC Affiliated to Madurai Kamaraj University
(Managed by Sri Ramakrishna Tapovanam, Tirupparaitturai, Trichy)
TIRUVEDAKAM WEST, MADURAI DISTRICT- 625234
www.vivekanandacollege.ac.in

DEPARTMENT OF MATHEMATICS

B.Sc. MATHEMATICS

SYLLABUS

Choice Based Credit System

\&

Outcome Based Education (OBE) Curriculum Framework
(Outcome Based Education Curriculum Framework

for those who joined in June 2018 and after)

Vision

To raise a battalion of Mathematics graduates equipped with logical thinking and tender heart to serve our motherland as potential leaders in the manifold of national effort.

Mission

Enriching the mental, emotional and intellectual facets of mathematics students to cope up with any career that they choose and to strive to attain perfection in life.

Abstract

About the Programme Mathematics was taught as a subject in Pre-university classes from 1971 onwards - that was the year the college started functioning. Mathematics as an Ancillary subject was offered from the inception of B.Sc. Physics degree that is from the year 1973-74. From 1980-81 onwards B.Sc Degree in Mathematics major was offered and so Mathematics department became a full-fledged one. The college became autonomous in June 1987. So the department had freedom to chart its own course. Syllabus was framed in 1987 and updated periodically to cater to the career needs of the students. But while framing and updating the syllabus, Mathematics department has always kept in mind the main stake holders are rural students. So, fundamental Mathematics was always a part of the syllabus. When the need arose Computer oriented papers, Competitive mathematics, Operations research, Vedic mathematics, Value education, Environmental science etc. were also incorporated in the syllabus.

The department also did not fall back in repaying its social obligations. Our students, guided by the department teachers, become resource persons to teach mathematical concepts, Vedic maths, yoga etc. to the school students. Learning becomes easier by laboratory activities and by building mathematical models. Our student's practice this and their innovations are exhibited and explained in the three day Mathematics Exhibition for Rural Masses conducted once in 2 years. Our students are encouraged to participate enthusiastically in all the college endeavors and activities like NSS, NCC, controlling the public during functions and festival times, election duties, temple cleanliness etc.

Programme Educational Objectives (PEOs)
 The objectives of this programme is to

PEO 1: Apply and advance the knowledge and skills acquired, to become a creative professional in their chosen field.
PEO 2: Discuss the multidisciplinary knowledge through industrial visit and providing a sustainable competitive edge in meeting the industry needs.
PEO 3: Perceive to become an eminent Mathematician with Excellent Employability and Research Skill.
PEO 4: Develop confidence to appear for Competitive examinations and will occupy higher posts in administrative level.
PEO 5: Expose them to various contemporary issues which will enable them to become ethical and responsible towards themselves, co-workers, the Society and the Nation.

Programme Outcomes (POs)

The Objective of this Programme is to
PO 1: Provide a thorough Disciplinary Knowledge and Critical Thinking
PO 2: Offer Effective Communication and Digital Literacy
PO 3: Demonstrate a Social Interaction
PO 4: Utilize Effective Citizenship
PO 5: Apply Ethics and Values
PO 6: Provide Environment and Sustainability

PO 7: Make use of Self -directed and life - long learning

Programme Specific Outcomes (PSOs)

PSO1: Demonstrate basic manipulative and calculative skills in Trigonometry, geometry and Calculus.
PSO2: Read, analyzes and judge the validity of mathematical arguments.
PSO3: Students will be able to communicate mathematical ideas both orally and in writing.
PSO4: Display mastery of basic computational skills and recognize the appropriate use of technology to enhance those skills.
PSO5: Investigate and apply mathematical models in a variety of contexts related to science, technology, business and industry.

Graduates Attributes(GA)

GA 1: To acquire the knowledge to apply analytical and theoretical skills to model and solve mathematical problems.
GA 2: To provide sufficient knowledge on computer skills through MS office, $\mathrm{C}, \mathrm{C}++$ and many innovative and modern subjects in Mathematics
GA 3: To apply the critical thinking ability to carry out extended investigation and innovation of mathematical formulations.
GA 4: To recognize connections between different branches of mathematics and appreciate the connections between theory and applications.
GA 5: To understand and apply mathematical concepts in various contexts related to science, technology, business, and industry.

Mapping of PEO with PO

	PEO 1	PEO 2	PEO 3	PEO 4	PEO 5
PO 1	3	3	3	9	9
PO 2	9	3	9	1	1
PO 3	1	1	3	1	3
PO 4	1	1	1	1	3
PO 5	3	3	9	3	9
PO 6	1	1	1	3	3
PO 7	1	3	3	1	9

Mapping of PO with GA

	GA 1	GA 2	GA 3	GA 4	GA 5
PO 1	9	3	9	1	1
PO 2	1	3	3	3	9
PO 3	1	1	3	3	9
PO 4	1	1	1	1	3
PO 5	1	1	1	1	9
PO 6	3	3	1	1	3
PO 7	9	9	1	3	9

Assessment

Under Graduate Programmes - Question Paper Pattern for Both CIA \& End Semester Examinations

With Effect From: 2018-19 onwards

Part I (Tamil / Sanskrit/Hindi) and Part II English

OBE Syllabus UG: Section A - Remembering (K1)
Section B - Remembering (K1)
Section C - Understanding (K2)
Section D - Applying (K3)
CIA Test Question Paper Pattern (UG) - 3 Tests per Semester - 2 Hours
Section - A: MCQs (Compulsory)
10 X $1=10$ Marks
Section - B: VSA (5 out of 7)
5 X $2=10$ Marks
Section - C: SA (3 out of 5)
3 X $6=18$ Marks
Section - D: LA (1 out of 2)
1 X 12 = 12 Marks

50 Marks
End Semester Examinations Question Paper Pattern (UG) - 3 Hours

Section - A: MCQs
Section - B: VSA (5 out of 7)
Section - C: SA (Either-or)
Section - D: LA (3 out of 5)

10 X $1=10$ Marks(From Question Bank given by the Course Teacher)
5 X $2=10$ Marks
5 X $5=25$ Marks
3 X $10=30$ Marks

Total
75 Marks

Part III (Core, Allied \&Elective)

CIA Test Question Paper Pattern (UG) - $\mathbf{3}$ Tests per Semester - $\mathbf{2}$ Hours
Section - A: MCQs (Compulsory)
Section - B: VSA (5 out of 7)
Section - C: SA (3 out of 5)
Section - D: LA (1 out of 2)

10 X 1=10 Marks
5 X $2=10$ Marks
3 X $6=18$ Marks
1 X 12=12 Marks

50 Marks

End Semester Examinations Question Paper Pattern (UG) - 3 Hours
Section - A: MCQs
Section - B: VSA (5 out of 7)
Section - C: SA (Either-or)
Section - D: LA (3 out of 5)

10 X $1=10$ Marks(From Question Bank given by the Course Teacher)
5 X $2=10$ Marks
5 X 5= 25 Marks
3 X $10=30$ Marks

Total $\quad \mathbf{7 5}$ Marks

Part IV (SBS-Skills Based Course)

```
CIA Test Question Paper Pattern (UG) - 3 Tests per Semester at Department Level- }1\mathrm{ Hour
```

Section - A: MCQs
Section - B: VSA (2 out of 4)
Section - C: SA (1 out of 2)
Section - D: LA (1 out of 2)

5 X $1=5$ Marks
2 X $2=4$ Marks
$1 \mathrm{X} 6=6$ Marks
1 X 10=10 Marks
\square
Total 25 Marks

For competitive exam questions Pattern (OMR with 4 options will be used) 50X1=50 (1 hour)
End Semester Examinations Question Paper Pattern (UG) - 2 Hours
Section - A: MCQs
Section - B: VSA (5 out of 7)
Section - C: SA (Either-or)
Section - D: LA (2 out of 4)

10 X $1=10$ Marks(From Question Bank given by the Course Teacher)
5 X $2=10$ Marks
3 X $9=27$ Marks
2 X 14= 28 Marks


```
Total \(\quad 75\) Marks
```

For competitive exam questions Pattern (OMR with 4 options will be used) 75X1=75 (2 hours)
Part IV (Non Major Elective, Value Education and Environmental Studies)
CIA Test Question Paper Pattern (UG) - 1 Test per Semester - 2 Hours
Section-A: MCQs
10 X $1=10$ Marks
Section -B: VSA (5 out of 7)
Section - C: SA (3 out of 5)
Section - D: LA (1 out of 2) 5 X $2=10$ Marks 3 X $6=18$ Marks 1 X 12= 12 Marks

50 Marks

End Semester Examinations Question Paper Pattern (UG) - 2 Hours

Section - A: MCQs
Section - B: VSA (5 out of 7)
Section - C: SA (Either-or)
Section - D: LA (2 out of 4)

10 X 1 = 10 Marks(From Question Bank given by the Course Teacher) 5 X $2=10$ Marks 3 X $9=27$ Marks 2 X 14= 28 Marks
\qquad
75 Marks

Total

Part V (End Semester Examinations only)

EXTENSION ACTIVITIES
End Semester Examinations Question Paper Pattern (UG) - 2 Hours

Section - A: MCQs
Section - B: VSA (5 out of 7)
Section - C: SA (Either-or)
Section - D: LA (2 out of 4)

10 X $1=10$ Marks
5 X $2=10$ Marks
$3 \mathrm{X} 9=27$ Marks
2 X 14= 28 Marks

Part VI (End Semester Examinations only) UG \& PG

1. General Knowledge - (One Examination per Semester- UG \& PG) - 1 Hour Section - A: MCQs 50 X $1=50$ Marks (OMR Sheet)

Total 50 Marks
2. Wit for Wisdom and Humour for Health - (One Examination per Year - UG \& PG) - 1 Hour

Section - A: LA (5 out of 7)
5 X 20=100 Marks

Total

100 Marks
3. Spiritual Education- (One Examination per Year - UG \& PG) - 1 Hour

Section-A: VSA
Section - B: SA (3 out of 5)
Section-C: LA (2 out of 4)

20 X $2=40$ Marks
3 X $5=15$ Marks
2 X $10=20$ Marks

Total
75 Marks
4. Physical Training- (One Examination for III Year UG \& II Year PG Students) - 1 Hour

Section - A: MCQs
Section - B: SA ((Either-or))
Section - C: LA (2 out of 4)

10 X 1 = 10 Marks
4 X $5=20$ Marks
2 X $10=20$ Marks

Total 50 Marks

Continuous Internal Assessment (CIA) - Distribution of Marks

	UG		PG	
Part - I, III Part - III	Test (Best Two)	Cycle Test $(5 \times 1=5)$	15 Marks	Test (Best Two)
	Assignment $(5 \times 1=5)$	5 Marks	Quiz / Seminar	5 Marks
	Total	5 Marks	Assignment	5 Marks
	Test (Best Two for SBS)	25 Marks	Total	$\mathbf{2 5}$ Marks
	Assignment	20 Marks		
	Total	5 Marks		

Abbreviations:

MCQs: Multiple Choice Questions
SA : Short Answer

VSA: Very Short Answer
LA : Long Answer

DEPARTMENT OF MATHEMATICS
 SCHEME OF EXAMINATIONS

Programme：B．Sc．MATHEMATICS（Under CBCS and Outcome Based Education（OBE） （For those students admitted during the Academic Year 2018－19 and after）

FIRST SEMESTER

$\underset{\sim}{\underset{N}{\Sigma}}$		نٍ	Course Title	n	（\％	S		\％
I	Tamil	P1LT11	Ikkalak Kavithaiyum Urainadaiyum	6	3	25	75	100
	Sanskrit	P1LS11	Fundamental Grammar \＆History of Sanskrit Literature－I					
II	English	P2LE11	English for Communication Skills－I	6	3	25	75	100
III	Core	05CT11	Algebra and Trigonometry	5	4	25	75	100
	Core	05CT12	Differential Calculus	5	4	25	75	100
	Allied	06AT01	Allied Paper I：Allied Physics－I	4	4	25	75	100
			Allied Practical	2	－	－	－	－
IV	Non Major	05NE11	Non Major Elective Paper I ： Fundamentals of Mathematics	2	2	25	75	100
			Total	30	20			

SECOND SEMESTER

$\underset{\sim}{\underset{y}{x}}$			Course Title	第	免	S		$\begin{aligned} & \text { 骨 } \\ & =0 \end{aligned}$
I	Tamil	P1LT21	Ikkalak Kadhai Ilakkiyamum Makkal Thagavaliyalum	6	3	25	75	100
	Sanskrit	P1LS21	Poetry，Grammar \＆History of Sanskrit Literature－II					
II	English	P2LE21	English for Communication Skills－II	6	3	25	75	100
III	Core	05CT21	Integral Calculus	5	4	25	75	100
	Core	05CT22	Analytical Geometry 3D and Vector Calculus	5	4	25	75	100
	Allied	06AT02	Allied Paper II：Allied Physics－II	4	4	25	75	100
	Allied	06AP03	Allied：Allied Physics Practical	2	2	40	60	100
IV	Non Major	05NE21	Non Major Elective Paper II：Statistics and Operations Research	2	2	25	75	100
			Total	30	22			

THIRD SEMESTER

$\stackrel{\rightharpoonup}{む}$			Course Title	嫘	免	允苞		
I	Tamil	P1LT31	Kappiyamum Pakthi Ilakkiyamum Nadagamum	6	3	25	75	100
	Sanskrit	P1LS31	Prose，Poetics \＆History of Sanskrit Literature－III					
II	English	P2LE31	English for Academic and Professional Excellence－I	6	3	25	75	100
III	Core	05CT31	Differential Equations	5	4	25	75	100
	Core	05CT32	Numerical Methods	5	4	25	75	100
	Allied	05AT31	Allied Paper I：Programming in C	4	3	25	75	100
		05AP32	Allied Practical：Practical C	2	2	40	60	100
IV	Skill Based	05SB31	Skill Based Paper－I： Mathematical Logic	2	2	25	75	100
			Total	30	21			

FOURTH SEMESTER

シ	家曾	نِّ	Course Title	彩	\％	它紫		플
I	Tamil	P1LT41	Sanga Ilakkiyamum Neethi Ilakkiyamum	6	3	25	75	100
	Sanskrit	P1LS41	Drama and History of Sanskrit Literature－IV					
II	English	P2LE41	English for Academic and Professional Excellence－II	6	3	25	75	100
III	Core	05CT41	Sequence and Series	5	4	25	75	100
	Core	05CT42	Dynamics	5	4	25	75	100
	Allied	05AT41	Programming in C＋＋	4	3	25	75	100
	Allied	05AP42	Practical：Programming in C＋＋	2	2	40	60	100
IV	Skill Based	05SB41	Competitive Mathematics	2	2	25	75	100
			Total	30	21			

FIFTH SEMESTER

$\underset{\sim}{\underset{N}{E}}$		券	Course Title	n	:	元坒	幾些要	¢
III	Core	05CT51	Statistics	5	4	25	75	100
	Core	05CT52	Modern Algebra	5	4	25	75	100
	Core	05CT53	Real Analysis	5	5	25	75	100
	Core	05CT54	Statics	6	5	25	75	100
	Elective	05EP5A	Linear Programming	5	5	25	75	100
		05EP5B	Combinatorics					
IV	SBS	05SB51	Quantitative Aptitude	2	2	25	75	100
	EVS	ESUG51	Environmental Studies	2	2	25	75	100
			Total	30	27			

SIXTH SEMESTER

$\stackrel{\dot{H}}{\tilde{\omega}}$			Course Title	$\begin{aligned} & n \\ & \tilde{y} \\ & \\ & \hline \end{aligned}$	苞	它鬲		\cdots
III	Core	05CT61	Linear Algebra	5	5	25	75	100
	Core	05CT62	Complex Analysis	6	5	25	75	100
	PROJ／ELE	05EP6A	Graph Theory	5	5	25	75	100
		05EP6B	Cryptography					
	PROJ／ELE	05EP6C	Operations Research	6	5	25	75	100
		05EP6D	Fuzzy Sets					
IV	SBS	05SB61	Skill Based Paper IV： Advanced Statistics	2	2	25	75	100
	SBS	05SB62	Skill Based Paper V： Boolean Algebra	2	2	25	75	100
	SBS	05SB63	Skill Based Paper VI： SPSS－Statistical Package for the Social Sciences（Practical）	2	2	40	60	100
	VE	VEUG61	Value Education	2	2	25	75	100
V	EA	EAUG61	Extension Activities	－	1	－	100	100
			Total	30	29			

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : Algebra and Trigonometry		
Course Code: 05CT11	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the I B.Sc. Mathematics students to provide a strong foundation on the concepts in Algebra and Trigonometry.
Course Outcomes (COs)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the basic concepts and get the knowledge about irrational and imaginary roots and transformations of equations.	K_{1}
CO 2	understand the basic concepts of reciprocal equations	K_{2}
CO 3	find the approximate roots using Horner's method	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 4	derive the expansions of $\sin \theta, \cos \theta, \tan \theta, \sin n \theta, \cos n \theta$, $\tan n \theta, \sin ^{\mathrm{n}} \theta, \cos ^{\mathrm{n}} \theta$.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 5	understand the concept of the logarithm of complex numbers and to find the sum of trigonometric series using $\mathrm{C}+\mathrm{iS}$ method summation of series.	K_{3}

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying
Syllabus

| UNIT-I | Irrational roots, imaginary roots- relation between roots and
 coefficients- symmetric functions of the roots- sum of the powers of
 roots - Newton's theorem(without proof) - transformations of
 equations - roots with signs changed - roots multiplied by a given
 number. | (15Hrs) |
| :---: | :--- | :--- | :--- |
| UNIT-II | Reciprocal equations - synthetic division - decreasing and
 increasing the roots- removal of terms - to form an equation whose
 roots are any power of the roots - transformations in general. | $\mathbf{(1 5 H r s)}$ |
| UNIT- IIII | Descarte's rule of signs - Rolle's theorem - multiple roots - finding
 approximate roots using Horner's method. | $\mathbf{(1 5 H r s)}$ |

UNIT- IV	Expansions - expansions of $\operatorname{cosn} \theta, \operatorname{sinn} \theta, \operatorname{tann} \theta$-expansions for $\cos ^{\mathrm{n}} \theta$ and $\sin ^{\mathrm{n}} \theta-$ expansions of $\sin \theta, \cos \theta$, and $\tan \theta$ in series of ascending powers of θ - hyperbolic functions-inverse hyperbolic functions.	(15Hrs)
UNIT- V	Logarithm of complex numbers - summation of series : (C+iS method only)	(15Hrs)

Text Books

1. Algebra Vol. 1 by T.K.Manicavachagampillai, T. Natarajan, K S Ganapathy, Viswanathan printers and publishers pvt. Ltd., Chennai - Edition 2004.
2. Trigonometry by T.K.Manicavachagampillai, Viswanathan printers and publishers pvt. Ltd., Chennai - Edition 2004.

Unit	Text Book	Chapters
1	1	$6(1-15(15.1-15.2))$
		$6(16-21)$
3		$6(24-26,30)$
4	2	$\mathrm{III}(1-5) \& \mathrm{IV}(1,2.0-2.3)$
5		$\mathrm{~V}(5.0-5.2) \& \mathrm{VI}(3.0-3.2)$

Reference Books

1. Algebra by Dr. S. Arumugam, New gamma publishing house, Palayankottai.
2. Trigonometry by Dr. S. Arumugam \& Thangapandi Issac New Gamma publishing house, Palayankottai.

Mapping of CO with PO
CO - PO Mapping for Course Code: 05CT11

Course Code: 05CT11	PO1	PO 2	PO 3	PO 4	PO 5	PO 6	PO7
CO 1	9	-	3	-	3	-	3
CO 2	9	-	3	-	3	-	3
CO 3	9	-	3	-	3	-	3
CO 4	9	-	3	-	3	-	3
CO	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT11

05CT11	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO 2	3	9	9	3	9
CO 3	3	9	9	3	9
CO 4	3	9	9	3	9
CO 5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

Solution of algebraic equation:
https://youtu.be/Z-ZkmpQBIFo https://youtu.be/hXXdCRsNYOU https://youtu.be/VTQSGYnqw1Y
Reciprocal Equations:
https://youtu.be/0HwGGTdrBzg https://youtu.be/dppJ_iHcZsQ
Horner's method:
https://youtu.be/Eds30oX3d9k
Expansion of Trigonometry Ratio:
https://youtu.be/6Rw-GMEjQ8s
https://youtu.be/giAjpfwC2LE
https://youtu.be/2VMiwNcg0ek
Inverse Trigonometry Ratio:
https://youtu.be/YXWKpgmLgHk
https://youtu.be/w9sjzaXEGVw
https://youtu.be/ADpxUQMCSng

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory				
Course Title : DIFFERENTIAL CALCULUS				
	Sours per week: 5			Credits: 4
	Course Code: 05CT12	ESE: 75 Marks		
CIA: 25 Marks	Total: 100 Marks			

Preamble

To enable the students to

- Have a thorough knowledge of differentiation.
- Solve the problems using expansion of functions
- Know about curvature, radius of curvature and evolute.
- Gain knowledge about the application of Differential Calculus at higher level.
- Acquire the basic skill to solve problems on differential calculus and concept of differential equation.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} \mathbf{1}$	understand the basic concepts and definitions of differentiation and explain the method of differentiation	$\mathrm{K}_{1,}, \mathrm{~K}_{2}$
$\mathbf{C O} \mathbf{2}$	get knowledge of successive differentiation and Leibnitz theorem.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O ~ 3}$	understand the concept of subtangent and subnormal which are important in physics and also the concept of envelope, a curve that is tangential to each one of a family of curves in a plane.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O}$ 4	get the knowledge of radius of curvature, which shows how a curve is almost part of a circle in a local region	K_{2}
$\mathbf{C O ~ 5}$	understand the concept of partial derivatives which are used in vector calculus and differential geometry.	$\mathrm{K}_{1,}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Differentiation Methods of differentiation: standard forms - differential coefficients of $\mathrm{x}^{\mathrm{n}}, \mathrm{e}^{\mathrm{x}}, \log \mathrm{x}, \sin \mathrm{x}, \cos \mathrm{x}, \tan \mathrm{x}$, (derivations not included). Differential coefficient of a sum or difference - product rule - quotient rule function of a function rule - inverse functions - hyperbolic functions, inverse hyperbolic functions - logarithmic differentiation trigonometrical transformations- differentiation of implicit functiondifferentiation of one function w.r.t. another function.	(15 Hrs)

UNIT-II	Successive Differentiation Successive differentiation -the $\mathrm{n}^{\text {th }}$ derivative - standard results formation of equation involving derivatives -Leibnitz formula for the $\mathrm{n}^{\text {th }}$ derivative of a product and related problems	(16 Hrs)
UNIT- III	Subtangent, Subnormal \& Envelope Subtangent and subnormal - differential coefficient of the length of an arc of a curve - polar coordinates - angle between the radius vector and the tangent - angle of intersection of two curves - length of an arc in polar co-ordinates - envelope - method of finding the envelopes	(16 Hrs)
UNIT- IV	Curvature of plane curves Curvature -radius, centre, circle and chord of curvature - Cartesian formula for the radius of curvature - the coordinates of centre of curvature-evolute and involute - radius of curvature when the curve is given in polar co-ordinates - pedal equation of a curve.	(16 Hrs)
UNIT- V	Partial differentiation Partial differentiation -function of a function rule- total differential coefficient- implicit functions -homogeneous functions	(12 Hrs)

Text Book

CALCULUS vol I by T.K.Manikavasakam Pillai \& S.NarayananVishwanathan printers and publishers Pvt Ltd. Chennai - Reprint 2017.

Units	Chapters
1	chapter-2
2	chapter-3
3	chapter-9 (except 1 section) \& 10 (1.1-1.4)
4	chapter-10 (2.1-2.7)
5	chapter-8 (1.1-1.3, 1.5 -1.6)

Reference Book

CALCULUS by Dr. S. Arumugam, New Gamma publishing house, Palayamkottai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT12

05CT12	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	9	3	3	3	3
CO 2	9	-	9	3	3	3	3
CO 3	9	-	9	3	3	3	3
CO 4	9	-	9	3	3	3	3
CO5	9	-	9	3	3	3	3
Weightage of the course	45	-	45	15	15	15	15
Weighted percentage of Course contribution to POs	3	0	6	2	2	5	2

Mapping of CO with PSO
CO - PSO Mapping for Course Code: 05CT12

05CT12	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	3	9	9	3
CO2	9	9	3	3	3
CO3	3	9	3	9	9
CO4	3	9	3	9	9
CO5	9	3	9	9	3
Weightage of the course	33	33	27	39	27
Weighted percentage of Course contribution to POs	5	4	3	8	3

Online Resources

1. Differentiation standard forms - https://www.youtube.com/watch?v=BcOPKQAZcn0
2. Successive differentiation - https://www.youtube.com/watch?v=ftGzd9dguzs
3. Subtangent \& subnormal - https://www.youtube.com/watch?v=QiXRNcDWDw8
4. Curvature - https://www.youtube.com/watch?v=gspjhwSNMWs
5. PDE - https://www.youtube.com/watch? $\mathrm{v=O3ahEHAX-KU}$

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		
Course Title : ALLIED PHYSICS - I		
SEMESTER - I		
Course Code: 06AT01	Hours per week: 4	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to

- It deals with the concept of principles of wave motion
- Gives an idea about Elasticity, viscosity and surface tension
- It discusses the study of thermal physics
- Apply the concept of electricity
- Providing good foundation in optics

Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O ~ 1 ~}$	explain the basic concepts of acoustic studies	K_{2}
$\mathbf{C O ~ 2 ~}$	understand the properties of matter like elasticity, viscosity and surface tension	K_{2}
$\mathbf{C O ~ 3}$	outline theory of laws of thermodynamics	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O 4}$	understand the basic concept of electricity and magnetism	K_{2}
$\mathbf{C O ~ 5}$	apply the methodology of optical activities.	K_{3}

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus
\qquadUNIT-I Waves and Oscillations Simple Harmonic Motion - Composition of two Simple Harmonic Motions in a straight line- Composition of two Simple (12 Hrs) Harmonic Motions of equal time periods at right angles- - Melde's Experiment - Ultrasonics- production -application and uses- - Reverberation - Absorption coefficient - Acoustics of buildings - factors affecting the acoustics of buildings- Sound distribution in an auditorium
UNIT-II
Properties of Matter Elasticity: Introduction- Different moduli of elasticity - Poisson's ratio-Energy stored in a stretched wire - Bending of beams - expression for the bending moment- Theory of Non-uniform bending - Torsion Pendulum - expression for the period of oscillation of a torsion pendulum. Viscosity: Streamline flow and turbulent flow - Coefficient of

	viscosity - Derivation of Poiseulle's formula. Surface Tension: Introduction- experimental determination of surface tension - Jaegar's method.	
UNIT- III	Thermal Physics Laws of thermodynamics - Zeroth law of thermodynamics - first law of thermodynamics - second law of thermodynamics- third law of thermodynamics - Heat engine - Entropy - Change of entropy in a carnots cycle.	(12 Hrs)
	Electricity and Magnetism Introduction - Magnetic effect of electric current - Oersted's experiment -BiotSavart law- Magnetic induction at a point on the axis of a circular coil- choke coil-Electric circuit - switches- fuses- circuit breaker - the relay	(12 Hrs)
UNIT- V	Geometrical Optics Introduction - image formation by refraction - Critical angle -Refraction through prism - direct vision spectroscope - coma - Spherical aberration in a lens - methods of minimizing spherical aberration - condition for minimum spherical aberration of two thin lenses separated by a distance - chromatic aberration in a lens- condition for achromatism of two lenses separated by a distance	(12 Hrs)

Text Book

1. Allied Physics Paper I and II - R. Murugeshan, M.Shantha Kiruthiga Sivaprasath, S.Chand \& Company Pvt. Ltd. New Delhi, Revised Edition, Reprint 2014.

Reference Books

1. Electricity and Magnetism - R. Murugeshan -Reprint with correction 2008
2. Principles of Electronics - V.K.Metha \& Rohit Metha -Multicolour Illustrative edition - 2006- S. Chand \& Company Ltd., New Delhi
3. Modern Physics-R. Murugeshan \& Kiruthiga Sivaprasath- Multicolour Edition - 2007- S. Chand \& Company Ltd., New Delhi

Mapping of CO with PO

CO - PO Mapping for Course Code: 06AT01

06AT01	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 06AT01

06AT01	PSO1	PSO2	PSO3	PSO4	PSO5
$\mathrm{CO1}$	3	9	9	3	9
CO 2	3	9	9	3	9
CO 3	3	9	9	3	9
$\mathrm{CO4}$	3	9	9	3	9
$\mathrm{CO5}$	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Non Major Elective		SEMESTER - I
Course Title : Fundamentals of Mathematics		
Course Code: 05NE11	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble
To enable the students to

- Have a thorough knowledge of Ratio \& Proportion.
- Solve the problems in equation of lines.
- Know about matrices, addition \& Multiplication in matrices.
- Gain knowledge about arithmetic series \& Geometric series.
- Solve the problems in quadratic equations.

Syllabus

Unit-I
Theory of indices - Ratio and Proportion.
Unit-II
Distance between two points - Equation of a line - Different forms [except normal form].

Unit-III

Theory of Matrices - Addition, multiplication of two matrices.
Unit-IV
Finding the $n^{\text {th }}$ term and sum to n terms of an A.P and G.P - Arithmetic mean and geometric mean.

Unit-V

Solving the quadratic equations - finding the roots - forming the equation when the roots are given (only second degree).

Text Books

1. Business Mathematics by Dr.V.R.Vittal, Margham publications, Chennai (Reprint 2012).
2. A text Book of Business Mathematics by Padmalochan Hazarika, S. Chand publication (Reprint 2014).

Unit	Text Books	Chapters
1	1	Chapter 4,2
$n n$		Chapter 12
2		Chapter 14
3		Chapter 7
4		Chapter 3 (3.2)
5	2	

Reference Book

Business mathematics by Dr.M.Manoharan \& Dr.C.Elango Palani Paramount publications, Palani. 2006 Edt.

Online Resources

1. Theory of indices - https://www.youtube.com/watch?v=BUJKEDqGp1U
2. Distance between two points - https://www.youtube.com/watch?v=0IOEPcAHgi4
3. Matrices - https://www.youtube.com/watch?v=xyAuNHPsq-g
4. AP \& GP - https://www.youtube.com/watch?v=gua96ju_FBk
5. Quadratic equations - https://www.youtube.com/watch?v=UZTvYYoOrmI

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title $:$ Integral Calculus		
SEMESTER - II		
Course Code: 05CT21	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the I B.Sc. Mathematics students to provide a strong foundation on the concepts in Integral Calculus and to develop the skill of solving problems.

Course Outcomes (CO)

Upon successful completion of this course, the students will able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	recall the integration of algebraic, rational, trigonometrical, exponential and logarithmic functions	K_{1}
$\mathbf{C O}$ 2	recognize the integration as the reverse process of differentiation	K_{2}
$\mathbf{C O ~ 3}$	compute the definite and indefinite integrals by using the techniques of integration	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4}$	use the knowledge of multiple integrals for finding the volume and area	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	use the integration to solve real world problems.	K_{3}

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Integration - Introduction - standard forms - methods of integration - integral of function containing linear function of x - integrals of the form $\int \mathrm{F}\left[(\mathrm{f}(\mathrm{x})] \mathrm{f}^{\prime}(\mathrm{x}) \mathrm{dx}\right.$-integration of rational \& irrational algebraic functions.	(15Hrs)
UNIT-II	Properties of definite integrals - integration by parts - reduction formulae for integrands $x^{n} e^{a x}, x^{n} \cos a x, \sin ^{n} x, \cos ^{n} x, \sin ^{m} x \cos ^{n} x$, $\tan ^{\mathrm{n}} \mathrm{x}, \cot ^{\mathrm{n}} \mathrm{x}, \sec ^{\mathrm{n}} \mathrm{x}, \operatorname{cosec}^{\mathrm{n}} \mathrm{x}$.	(15Hrs)
UNIT- III	Double integral - evaluation of double integral - double integral in polar coordinates - Beta and Gamma functions.	(15Hrs)
UNIT- IV	Triple integrals - change of variables - Jacobean - transformation from Cartesian to polar coordinates - Cartesian to spherical polar coordinates - Cartesian to cylindrical coordinates - area by double integral - volume by triple integral.	(15Hrs)
UNIT- V	Fourier series - definition - even and odd functions - expanding $f(x)$ as Fourier series in $(-\pi, \pi),(0,2 \pi)$ - half range series development of cosine and sine series - change of interval expanding $f(x)$ as Fourier series in $(-1,1),(0,2 l)$ and $(0,1)$	(15Hrs)

Text Book

Calculus Vol II and III by S. Narayanan, T.K. Manicavachagompillay. S.Visvanthan, Printers \& publishers, Pvt. Ltd., Chennai - Reprint 2019.

Unit	Volume Number	Chapters
1	II	Chapter 1 (1.1, 1.2, 2, 3, 5, 6.1, 6.2, 6.6, 7.1, 7.3, 7.4, 7.5 \& 8)
2		Chapter 1 (4, 11, 12, 13.1-13.9)
3		Chapter 5 (2.1, 2.2, 3.1, 3.2) \& 7
4		Chapter 5 (4), 6 (1.1, 2.3, 2.4)
5	III	Chapter 6 (1, 2, 3, 4, 5.1, 5.2, 6)

Reference Book

Calculus by Dr.S.Arumugam, New Gamma Publishing House, Palayamkottai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT21

05CT21	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT21

05CT21	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	9
CO4	9	9	9	3	9
CO5	9	9	9	3	9
Weightage of the course	45	45	45	15	36
Weighted percentage of Course contribution to POs	7	5	5	3	4

Online Resources

1. Integration - Definite integral - https://www.youtube.com/watch?v=rCWOdfQ3cwQ
2. Properties of Definite integral - https://www.youtube.com/watch?v=rCWOdfQ3cwQ
3. Double integral - htt ps://www.youtube.com/watch?v=db7d_a0wiUg
4. Triple integrals - https://www.youtube.com/watch?v=7iy83x8bv60
5. Fourier series - https://www.youtube.com/watch?v=x04dnqg-iPw

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		SEMESTER - II
Course Title : ANALYTICAL GEOMETRY 3D AND VECTOR CALCULUS		
Course Code: 05CT22	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in the three dimensional Analytical Geometry and Vector Calculus.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the basic concepts of coordinate system and planes. Equation of a straight line. Equation of a sphere. Basic concepts of vector differentiation and vector integration	$\mathrm{K}_{1,}, \mathrm{~K}_{2}$
CO 2	know about the relation between the direction ratios and direction cosines of a line, different forms of the equation of a plane, equation of a straight line and equation of a sphere.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 3	find the angle between two planes, angle between a line and a plane, shortest distance between two lines and circle of intersection of two spheres.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 4	know about divergence and curl of a vector, solenoidal and irrotational vectors, Laplacian operator.	K_{2}
CO 5	get the knowledge of Green's theorem, Stoke's theorem and Gauss divergence theorem and application these theorems.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
	K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understand	K_{3}-Apply

Syllabus

	Coordinate System and Planes		
Coordinate system and planes - rectangular Cartesian coordinates			
direction cosines - direction ratios - angle between 2 lines-condition for			
parallelism and perpendicularity- planes - equation of a plane - different			
forms - general form, three point form, intercept form, normal form-angle			
between two planes - length of the perpendicular from a point to a plane-			
angle bisectors of two planes.		\quad (17 Hrs) \quad The Straight Line \quad	SNIT-I
:---			
UNIT-II			
Straight line - equation of a straight line-different forms - non-symmetric form, symmetric form, two point form - a plane and a line-coplanar lines- condition for coplanarity- angle between a line and a plane - equation of a plane containing two lines - length of the perpendicular from a point to a			

	line - skew lines - shortest distance between two skew lines.	
UNIT- III	Sphere The Sphere - equation of a sphere - different forms - centre radius form, diameter form- tangent line and tangent plane - angle of intersection of two spheres-section of a sphere.	(12 Hrs)
UNIT- IV	Vector Differentiation Vector differentiation - differentiation of vectors - gradient of vectors geometrical interpretation - directional derivative and its maximum value - divergence and curl of a vector - solenoidal and irrotational vectors Laplacian operator - harmonic vectors - connected theorems and problems.	(14 Hrs)
UNIT- V	Line and Surface integrals Vector integration - line integrals - work done by a force - surface integrals - integral theorems - Green's theorem in plane, Stoke's theorem, Gauss divergence theorem (statement of theorems only) - simple problems.	(15 Hrs)

Text Books

1. Analytical Geometry 3 Dimensions by T.K. Manicavachagom pillai, S. Vishwanathan (Reprint 2017) printers and publishers Pvt. Ltd. Chennai
2. Vector Calculus by S.Narayanan \&T.K. Manicavachagom pillai (1997 edition) printers and publishers Pvt. Ltd. Chennai

Unit	Text Books	Chapters
1	1	Chapter 1 and 2
		Chapter 3 (Section: $1-8)$
2		Chapter 4
3		Chapter 1 (Section $1-11$)
4	2	Chapter 3 (Section $1-10)$
5		

Reference Book

1. Analytical Geometry 3 Dimensions and Vector Calculus by S. Arumugam and Thangapandian Issac. New Gamma publishing company, Palayamkottai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT22

05CT22	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15

Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT22

05CT22	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO 2	9	9	9	3	3
CO 3	9	9	9	3	9
CO 4	9	9	9	3	9
CO5	9	9	9	3	9
Weightage of the course	45	45	45	15	36
Weighted percentage of Course contribution to POs	7	5	5	3	4

Online Resources

https://youtu.be/Ee750MJbz8Q
https://youtu.be/6DFy9dGDj9A
https://youtu.be/plCve8lLNbg (Plane)
https://youtu.be/VYRJOS4F4w4
https://youtu.be/YWiapEzQ56g (Straight line)
https://youtu.be/a2mt2L0e06Y
https://youtu.be/mbJsTFX33H4 (Sphere)
https://youtu.be/TCZ1GMoaUJw
https://youtu.be/csCskd01jwE (Vector Differentiation)
https://youtu.be/gQCIK0hlI2M (Line Integral)
https://youtu.be/Gml1HT4y3_c (Surface Integral)
https://youtu.be/_GRF5WaPBFU (Volume Integral)
https://youtu.be/tjXX5wxPqUI (Green's, Gauss and Stokes Theorem)

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		
Course Title : ALLIED PHYSICS - II		
Course Code: 06AT02	Hours per week: 4	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to

- learn the basic concepts of Physical Optics
- understand the fundamental concepts of Atomic Physics
- learn the basics of Nuclear Physics and its applications
- learn the principles of relativity
- understand fundamentals of analogue and digital electronics

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} 1$	differentiate various wave phenomenon of light such as interference, diffraction and polarization	K_{2}
$\mathbf{C O ~ 2 ~}$	understand the concept of spin and implication in classification of elements	K_{2}
$\mathbf{C O ~ 3}$	distinguish between Nuclear Fission and Fusion and their applications	$\mathrm{K}_{1}, \mathrm{~K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	understand the significance of Lorentz transformation and Mass energy equivalence	K_{2}
$\mathbf{C O ~ 5}$	distinguish between Junction Diode and Zener Diode and explain various logic gates	K_{3}

Syllabus

UNIT-I	PHYSICAL OPTICS Interference - Introduction - interference in thin films - production of colors in thin films - diffraction - introduction - plane transmission diffraction grating - polarization - introduction - double refraction - specific rotator power - lauret's half shade polarimeter - difference between interference and diffraction.	$(\mathbf{1 2 ~ H r s)}$
UNIT-II	ATOMIC PHYSICS Vector atom model - Quantum numbers associated with the vector atom model - the Pauli's exclusion principle - magnetic dipole moment due to spin - the stern and gerlach experiment.	$(\mathbf{1 2 ~ H r s)}$

UNIT- III	NUCLEAR PHYSICS Models of nuclear structure - mass defect - binding energy - ionization chamber - nuclear fission-energy released in fission- atom bomb - Nuclear reactor - Nuclear fusion - Distinction between fission and fusion.	(12 Hrs)
UNIT- IV	ELEMENTS OF RELATIVITY Frame of reference - Galilean Transformation Equations - Postulates of Special theory of Relativity - The Lorentz Transformation Equations - derivation - Length Contraction - Time Dilation - Mass Energy Equivalence	(12 Hrs)
UNIT- V	ELECTRONICS Light Emitting Diode (LED) - Zener Diode- experiment to study the characteristics of the zener diode - zener diode as voltage regulator - Logic Gates - AND gate - OR gate- the NOT gate - the NAND gate - NAND gate is a universal gate- the NOR gate -NOR gate is universal gate - Boolean algebra - Postulates and theorem of Boolean algebra - De Morgan's theorem.	$\mathbf{(1 2 ~ H r s) ~}$

Text Book

Allied Physics Paper I and II - R. Murugeshan, M.Shantha Kiruthiga Sivaprasath, S.Chand \& Company Pvt. Ltd. New Delhi, Revised Edition, Reprint 2014.

Unit I: 6.2 to $6.4,6.8,6.10,6.12,6.14,6.19,6.20$
Unit II: 7.1, 7.2, 7.4, 7.7, 7.8
Unit III: 8.1, 8.3, 8.4, 8.6, 8.8, 8.9, 8.12, 8.13, 8.14
Unit IV: 10.1 to $10.4,10.11$ to 10.21
Unit V: 9.1 to 9.7, 9.9

Reference Books

1. Electricity and Magnetism - R. Murugeshan -Reprint with correction 2008
2. Principles of Electronics - V.K.Metha \& Rohit Metha -Multicolour Illustrative edition - 2006- S. Chand \& Company Ltd., New Delhi
3. Modern Physics-R. Murugeshan \& Kiruthiga Sivaprasath- Multicolour Edition - 2007- S. Chand \& Company Ltd., New Delhi

Mapping of CO with PO
CO - PO Mapping for Course Code: 06AT02

06AT02	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO
CO - PSO Mapping for Course Code: 06AT02

06AT02	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	9
CO4	9	9	9	3	9
CO5	9	9	9	3	9
Weightage of the course	45	45	45	15	36
Weighted percentage of Course contribution to POs	7	5	5	3	4

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE) (For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Lab		
Course Title : ALLIED PHYSICS PRACTICAL		
Course Code: 06AP03	Hours per week: 2	Credits: 2
CIA : 40 Marks	ESE : 60 Marks	Total : 100 Marks

Preamble

To enable the students to

- Develop practical skills in mechanical, electrical measurements and optics experiments.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	estimate the value of Young's modulus of a given iron bar, wooden scale and the value of Rigidity modulus of a given wire	K3
$\mathbf{C O ~ 2 ~}$	estimate the viscosity of a given liquid	K3
$\mathbf{C O ~ 3}$	measure the thickness of thin paper and radius of curvature of a convex lens	K 3
$\mathbf{C O 4}$	determine the refractive index a glass prism and wavelength of the prominent lines of the mercury spectrum	K3
$\mathbf{C O ~ 5 ~}$	draw I-V characteristics of a diode and Zener diode	K3

Syllabus

1	Non-Uniform Bending - Pin and Microscope
2	Uniform Bending - Pin and Microscope
3	Non-Uniform Bending - Optic lever
4	Uniform Bending - Optic lever
5	Compound Pendulum
6	Torsional Pendulum
7	Sonometer - Verification of Laws (${ }^{\text {st }}$ law \& $2^{\text {nd }}$ law)
8	Viscosity by Stoke's method
9	Newton's rings - Determination of Radius of curvature
10	Air wedge - Thickness of a wire
11	Spectrometer - Refractive Index
12	Spectrometer - Grating -Normal incidence
13	Carey Foster Bridge
14	Diode Characteristics \& Zener Diode Characteristics
15	Logic Gates - AND, OR, NOT

Text Books

1. Allied Physics Paper I and II - R. Murugeshan, M.Shantha Kiruthiga Sivaprasath, S.Chand \& Company Pvt. Ltd. New Delhi, Revised Edition, Reprint 2014.
2. Mechanics Properties of Matter Practical I- R. Murugeshan, 2002.

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Non Major Elective		
SEMESTER - II		
Course Title : Statistics and Operations Research		
Course Code: 05NE21	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to develop the skill in solving problems of Averages, QD \& SD, LPP, Transportation \& Assignment problems.

Syllabus

Unit-I: Averages: Mean, median, mode.
Unit-II: Deviation: Quartile deviation - Standard deviation.
Unit-III: Graphical solution of L.P.P.
Unit-IV: Transportation problem.
Unit-V: Assignment problem.

TEXT BOOKS

1. Statistics by Dr.S.Arumugam, New Gamma publications Palayamkottai.Edition 2013.
2. Operations Research by Dr.S.Arumugam. Scitech Publications, Chennai, Edition 2006.

Unit	Chapters
1	Chapter 2 (Section: 2.1-2.3)
2	Chapter 3
3	Chapter 3 (Section: 3.1-3.3)
4	Chapter 10 (Section: 10.1-10.2, 10.9, 10.13.)
5	Chapter 11 (Section: 11.1-11.4)

REFERENCE BOOKS

1. Statisticsby S.C.Guptha \& V.K.Kapur Sultan, Chand \& sons New Delhi.
2. Operations Research by Kanti Swarop P.K.Guptha and Manmohan $5^{\text {th }}$ edition 2005.

Online Resources

Unit I - Mean, Median, Mode: https://youtu.be/uszshEZmSd8, https://youtu.be/40hHbm8jIFE, https://youtu.be/a1YNCRXb1Oc ,
Unit II : Deviation: https://youtu.be/Aydqi-mPdf4 , https://youtu.be/mYEOe8JpgHs, https://youtu.be/MRqtXL2WX2M , https://youtu.be/wpY9o OyxoQ, Unit III Graphical Method : https://youtu.be/06Q03J 85as, https://www.slideshare.net/kratikadhoot/graphical-method-17041901, Unit IV Transportation Problem: https://youtu.be/ItOuvM2KmD4, https://www.slideshare.net/VishalHotchandani2/transportation-problems-183454172, Unit V Assignment Problem: https://youtu.be/rrfFTdO2Z71, https://www.slideshare.net/NakulBhardwaj1/assignment-problem-52928205, https://www.slideshare.net/abubashars/assignment-problem-18034506

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		SEMESTER - III
Course Title : Differential Equations		
Course Code: 05CT31	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide a strong foundation on the concepts in Differential Equations.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} \mathbf{1}$	understand the basic concepts and get the knowledge about the differential equations of first order. Also study the different types of methods to solve the differential equations of first order.	K 1
$\mathbf{C O}$ 2	derive the solutions of the differential equations of higher order with constant coefficients and with variable coefficients.	K_{2}
$\mathbf{C O}$ 3	study the different types of methods to solve the linear differential equations.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O} \mathbf{4}$	understand the concept of the Laplace transformations, inverse Laplace transformations. Also to solve the differential equations using Laplace transformations.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O} 5$	understand the basic concepts and get the knowledge about the partial differential equations. Also study the different types of methods to solve the partial differential equations.	$\mathrm{K}_{1,} \mathrm{~K}_{3}$

$$
\text { K1-Remebering } \quad \mathbf{K}_{2} \text {-Understanding } \quad \mathbf{K}_{3} \text {-Applying }
$$

Syllabus

UNIT-I	Differential equations of first order - formation of differential equations - homogeneous equations - non homogeneous equations - linear equations - Bernoulli's equations - exact equations.	(15 Hrs)
UNIT-II	Linear differential equations with constant coefficients - particular integrals of functions of the form $\mathrm{e}^{\mathrm{ax}}, \cos \mathrm{ax}, \sin \mathrm{ax}, \mathrm{x}^{\mathrm{m}}, \mathrm{e}^{\mathrm{ax}} \mathrm{V}-$ equations with variable coefficients-equations reducible to the linear homogenous equations.	(15 Hrs)

UNIT- III	Variation of parameters - simultaneous differential equations - simultaneous equations with constant coefficients - total differential equations.	(15 Hrs)
UNIT- IV	Laplace transformations - the inverse Laplace transformations - solving differential equations using Laplace transformations.	(15 Hrs)
UNIT- V	Partial differential equations - derivation of partial differential equations - different integrals of partial differential equations - solutions of partial differential equations in some simple cases - standard types of partial differential equations - standard I, II, III, IV - Lagrange's equations.	(15 Hrs)

Text Book

Calculus - vol III, by S. Narayanan, T.K.Manicavachagam Pillay, S.Viswanathan (printers \& publishers) Pvt. Ltd (Reprint 2017).

Unit	Chapters
1	Chapter 1 (Section: 1-3)
2	Chapter 2 (Section: 1-4 \& 8-9)
3	Chapter 2 (Section: 10) and 3
4	Chapter 5
5	Chapter 4 (Section: 1-6)

Reference Book

Differential equations, by Dr.S.Arumugam, New Gamma Publishing House, Palayamkottai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT31

05CT31	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	3	3	3
CO 2	9	-	3	3	3	3	3
CO 3	3	-	3	3	3	3	3
CO 4	9	-	3	9	3	3	3
CO5	9	-	3	3	3	3	3
Weightage of the course	39	-	15	27	15	15	15
Weighted percentage of Course contribution to POs	2	0	2	3	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT31

05CT31	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	3	9	3	3
CO2	3	3	3	9	9
CO3	3	3	3	3	3
CO4	9	3	9	3	3
CO5	9	3	3	9	9
Weightage of the course	33	15	27	27	27
Weighted percentage of Course contribution to POs	5	2	3	5	3

```
Online Resources
https://www.youtube.com/watch?v=gd1FYn86P0c (First order differential Equation)
https://www.youtube.com/watch?v=ot4Bfd4VBvo (Linear Differential Equation with Constant Coefficients)
https://www.youtube.com/watch?v=n_3ZmnVnrc4 (simultaneous differential equations)
https://www.youtube.com/watch?v=47aTGnEfLfQ (total differential equations)
https://www.youtube.be/8oE1shAX96U (Laplace Transform)
https://youtu.be/luJMl37-nso
https://youtu.be/EDVJotmT584(Laplace Transform)
https://youtu.be/_P519nGupO8
https://youtu.be/HuHgbEuUBSo(Inverse Laplace Transform)
https://youtu.be/u4yBWpmB6z4
https://youtu.be/OCLw11a0LTM(Partial Differential Equation)
https://youtu.be/ongICvz1BsQ
https://youtu.be/vSdrKPNIIRE(Types of Partial Differential Equation)
https://youtu.be/41U-i1Q7se0
https://youtu.be/QLLOI382tZw(Lagrange's form)
```


DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		SEMESTER - III
Course Title : Numerical Methods		
Course Code: 05CT32	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide a strong foundation on the concepts in Numerical Methods.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} \mathbf{1}$	understand the basic concepts Algebraic and transcendental equations and solve the equations using different types of methods.	K 1
$\mathbf{C O} \mathbf{2}$	understand the concept of finite differences and interpolation and understand the different types of interpolation formulae.	K_{2}
$\mathbf{C O ~ 3}$	understand the concept of Numerical differentiation and apply it in different types of formulae.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O} 4$	understand the concept of Numerical Integration and apply it in formula like Newton's cote's formula, trapezoidal rule and Simpson's rules	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O} 5$	study the basic concept of Numerical solution of differential equations, to solve the differential equation by different types of numerical methods.	$\mathrm{K}_{1,}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus		
UNIT-I	Algebraic and transcendental equations: errors in numerical computation- iteration method - Aitken's Δ^{2} method - bisection method -Regula falsi method - Newton-Raphson method simultaneous equations - back substitutions - Gauss' elimination method - Gauss-Jordan elimination method - calculation of inverse of a matrix - Gauss-Jacobi iteration method - Gauss-Seidal iteration method.	(15 Hrs)
UNIT-II	Finite differences and interpolation - difference operators - other difference operators - difference equations - formation of difference equations - linear difference equations - Newton's interpolation formula - central difference interpolation formula - Lagrange's interpolation formula - divided differences - divided difference interpolation formula - inverse interpolation.	(15 Hrs)

UNIT- III	Numerical differentiation - derivatives using Newton's forward, backward and central difference interpolation formulae - Stirling's formula - maxima and minima of the interpolating polynomial.	(15 Hrs)
UNIT- IV	Numerical integration - Newton-Cote's quadrature formula - trapezoidal rule - Simpson's one-third rule - Simpson's three-eighth rule - Weddley's rule.	$(\mathbf{1 5 ~ H r s)}$
UNIT- V	Numerical solution of differential equations - Taylor's series method - Picard's method - Euler's method - Runge_Kutta methods - predictor- corrector formulae.	$(\mathbf{1 5 ~ H r s) ~}$

Text Book

Numerical Analysis, by Dr.S.Arumugam, Prof. A.Thangapandi Issac andDr. A. Somasundaram, New Gamma Publishing House, Palayamkottai (Chapters: 1, 2, 3, 4, 5, 6, 7) (Reprint 2013).

Reference Book

Numerical Methods, by A.Singaravelu, Meenakshi Agency - Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT32

05CT32	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	3	3	9
CO2	9	-	3	9	3	3	9
CO3	9	-	3	9	3	3	9
CO4	9	-	3	9	3	3	9
CO5	9	-	3	9	3	3	9
Weightage of the course	45	-	15	45	15	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	2	5	5

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT32

05CT32	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	3
CO4	9	9	9	3	3
CO5	9	9	9	3	3
Weightage of the course	45	45	45	15	15
Weighted percentage of Course contribution to POs	7	5	5	3	2

Online Resources

Unit: I https://youtu.be/3j0c FhOt5U, https://youtu.be/3j0c FhOt5U https://voutu.be/3j0c FhOt5U https://youtu.be/oPkTasoJngA, https://youtu.be/jPv5pP1kOco, https://youtu.be/7eHuQXMCOvA, https://youtu.be/gxy6VIIhEfs
Unit : Il https://youtu.be/6x 5R9zgglw, https://voutu.be/i4xVS7bHv2Q, https://voutu.be/ xAUGIhEimA https://voutu.be/oOgtmTlj t4, https://youtu.be/6ffg8t64dD0
Unit : III https://youtu.be/hQvmLnyZDuE, https://youtu.be/qhUIx096afA, https://youtu.be/UF668 BOepc,
https://youtu.be/GsSCE 6mfWk
Unit : IV https://youtu.be/quoNfERQo7s, https://youtu.be/Sc5sAZeDdX4, https://youtu.be/iuvXoUlmgFg Unit : V https://youtu.be/vjPwvT4HFI8, https://youtu.be/yjPwvT4HFI8, https://youtu.be/rl8EiJ07i2I, https://youtu.be/vu6Zyai9F 4, https://youtu.be/lerLCCT08QU, https://youtu.be/F1eU42dz1SU, https://youtu.be/-306q7dWbqA

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		
Course Title : Programming in C		
SEMESTER - III		
Course Code: 05AT31	Hours per week: 4	Credits: 3
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide the strong foundation on concepts Programming in C

Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O}$ 1	understand the basic concepts of Character set \& C tokens.	K 1
$\mathbf{C O}$ 2	understand the basic concepts of decision making and branching	K_{2}
$\mathbf{C O ~ 3 ~}$	understand the basic concepts of arrays ie.,one, two and multi-dimensional arrays.	$\mathrm{K}_{2,}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	understand the basic concepts of user defined function.	K_{2}
$\mathbf{C O} 5$	understand the basic concepts of pointers and accessing address of a variable.	$\mathrm{K}_{1,} \mathrm{~K}_{2}$

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{3}$-Applying
Syllabus

UNIT-I	Character set- C tokens- Keywords and identifiers-constants-variables-data types-declaration of variables-assigning values to variables-defining assignment-increment, decrement and logical operators-arithmetic expressions- type conversion-managing input/output operations	(12 Hrs)
UNIT-II	Decision making and branching - 'if' statement (all forms) -'switch' statement - 'goto' statement - loops - 'while', 'do', 'for' statements - jumps in loops	(12 Hrs)
UNIT- III	Arrays-one, two and multi-dimensional array-string handling-reading, writing, comparison and concatenation of strings-table of strings	(12 Hrs)
UNIT- IV	User defined function-categories of functions-handling non-integer functions- functions with arrays-structures and unions- structure initialization-comparison of structure variables-array of structure -array within structures-structures within structures - structures and function-unions	(12 Hrs)
UNIT- V	Pointers-accessing address of a variable- Pointer expressions- Pointers and scale factors- Pointers in arrays, strang, function and structure- files- opening and closing a file-input/output operations on file-random access to files	(12 Hrs)

Text Book

Programming in ANSI C by E.Balagurusamy, Tata Mc. Graw Hill Publishing Company Ltd, New Delhi First reprint 2019.

Unit	Chapters
1	Chapter 2 $(2.1-2.11) \& 3(3.1-3.14)$
2	Chapter 5 $(5.1-5.9) \& 6(6.1-6.5)$
3	Chapter 7 $(7.1-7.7) \& 8(8.1-8.9)$
4	Chapter $9(9.9-9.17$ except 9.16$) \& 10(10.1-10.12$ except $10.6,10.7)$
5	Chapter 11 $(11.3,11.6,11.8-11.16) \& 12(12.1-12.6$ except 12.5$)$

Reference Book

Schaum's Outline Series: programming with C by Byron Gottfried (second Edition), Tata Mc. Graw Hill Publishing Company Ltd, New Delhi

Mapping of CO with PO

CO - PO Mapping for Course Code: 05AT31

05AT31	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	3	3	-	3	-	3
CO2	9	3	3	-	3	-	3
CO3	9	3	3	-	3	-	3
CO4	9	3	3	-	3	-	3
CO5	9	3	3	-	3	-	3
Weightage of the course	45	15	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	4	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05AT31

05AT31	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	3	3	9	9
CO2	3	3	3	9	9
CO3	3	3	3	9	9
CO4	3	3	3	9	9
CO5	3	3	3	9	9
Weightage of the course	15	15	15	45	45
Weighted percentage of Course contribution to POs	2	2	2	9	5

Online Resources

1. https://www.youtube.com/watch?v=-CpG3oATGIs - Tutorial - Introduction
2. https://www.youtube.com/watch?v=TEHA IwNk34 - Functions
3. https://www.youtube.com/watch?v=3y0_mqgXmSo - Structures \& Unions
4. https://www.youtube.com/watch? v=kKKvGYAX Zs - Pointers
5. https://www.youtube.com/watch?v=_KW_YBTXhN0 - Files

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Practical		SEMESTER - III
Course Title : Practical Programming in C		
Course Code: 05AP32	Hours per week: 2	Credits: 2
CIA : 40 Marks	ESE: 60 Marks	Total : 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide the strong foundation to write programs in Programming in C .

List of Problems for Lab Programming in C: Practical

1. Program to calculate the area of a triangle.
2. Program to find whether the given number is odd or even using 'if...else...' statement.
3. Program to find the biggest among three given numbers using 'nested if' statement.
4. Program to sum the digits of a given number.
5. Program to reverse a number using 'while' loop.
6. Program to check whether the given number is prime or not using 'for' loop.
7. Program to prepare students mark statement.
8. Program to sum the series $(1+2+3+\ldots \ldots .+n)$
9. Program to sum the series $(1 / 1+1 / 2+1 / 3+\ldots .+1 / n)$
10. Program to generate Fibonacci series.
11. Program to sort an array in ascending order using one dimensional array.
12. Program to sort an array in descending order using one dimensional array.
13. Program to add two matrices using two dimensional arrays.
14. Program to multiply two matrices using two dimensional arrays.
15. Program to calculate the factorial value of a number using recursive function

Text Book

Programming in ANSI C by E.Balagurusamy, Tata Mc. Graw Hill Publishing Company Ltd, New Delhi First reprint 2019.

Reference Book

Schaum's Outline Series: programming with C by Byron Gottfried (second Edition), Tata Mc. Graw Hill Publishing Company Ltd, New Delhi.

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV $:$ Skill Based Theory		
Course Title $:$ Mathematical Logic		
SEMESTER - III		
Course Code: 05SB31	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total : 100 Marks

Preamble

To develop the knowledge in logics.

Syllabus

UNIT I

Introduction - statements and notations - connectives

UNIT II

Statement formulae - well-formed formulae

UNIT III

Tautology

UNIT IV

Equivalence of formula - truth table method - replacement process

UNIT V

Law of duality - tautological implications

Text Book

Discrete Structures and Graph Theory by Gajavelli. S.S. Bhisma Rao, Scitech Publications (India) Ltd. Chennai-600017

Unit	Chapters
1	Chapter 1 $(1-3)$
2	Chapter 1 $(4,6)$
3	Chapter 1 (7)
4	Chapter 1 (8)
5	Chapter 1 $(9,10)$

Reference Book

Discrete Mathematics by Dr.M.K.Venkataraman, Dr.N.ChandraSekaran, Dr.N.Sridharan, the National Publishing Company Chennai. 2003-Edition.

Online Resources

1. Statement notations - https://www.youtube.com/watch?v=kTVIdBTW3jI
2. Statement formula - https://www.youtube.com/watch?v=LojjlWfPY8o
3. Tautology - https://www.youtube.com/watch?v=nZpJxXVyxuk
4. Truth table methods - https://www.youtube.com/watch?v=wRMC-ttjhwM
5. Law of duality - https://www.youtube.com/watch?v=bxa8yg0T2X0

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : Sequences and Series		
SEMESTER - IV		
Course Code: 05CT41	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide a strong foundation on the concepts in Sequences and Series.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O}$ 1	understand the basic concepts of sequence, inequalities. Also study the basic theorems and results.	K 1
$\mathbf{C O} 2$	derive the different types of sequences.	K_{2}
$\mathbf{C O 3}$	study the theorems and results on sequences.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O 4}$	understand the basic concept of Series and different types of tests.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O 5}$	study the different types of convergent series and also study the power series.	$\mathrm{K}_{1,}, \mathrm{~K}_{3}$

	K1-Remebering	\mathbf{K}_{2}-Understand	\mathbf{K}_{3}-Apply
Syllabus			

	Intervals in R - bounded sets - least upper bound and greatest lower bound of sets - bounded functions - triangle inequalities - arithmetic, geometric and harmonic means - Cauchy-Schwarz inequality - Weierstrass' inequality - theorems only (no problems).	(15 Hrs)
UNIT-I		
UNIT- III	Cauchy's first limit theorem - Ceasaro's theorem - Cauchy's second limit theorem - subsequences - limit points - Cauchy sequences (upper and lower limit of a sequence not included).	(15 Hrs)
UNIT- IV	Sequences ob positive terms - convergence - Cauchy's general principle of convergence - comparison test, Kumar's test, D-Alembert's ratio test, Gauss' test, Cauchy's root test, Rape's test, Cauchy's condensation test (proofs of tests not included) - simple problems.	(15 Hrs)
UNIT- V	Alternating series - absolute convergence and conditional convergence - Dirichlet test - rearrangement of series - multiplication of series - power series.	(15 Hrs)

Text Book

Sequences and Series by Dr. S. Arumugam. New Gamma Publishing House, Palayamkottai - Reprint 2019.

Unit	Chapters
1	Chapter 1 $(1.3-1.5) \& 2(2.3-2.6)$
2	Chapter 3 $(3.2-3.8)$
3	Chapter 3 $(3.9-3.12)$
4	Chapter 4 $(4.1-4.4)$
5	Chapter 5 $(5.1-5.5) \& 6(6.5)$

Reference Book

Algebra by T.K.Manicavachagom pillay, T. Natarajan, K.S. Ganapathy, S.Viswanathan (Printers \& Publishers) Pvt. Ltd, Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT41

05CT41	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7
CO 1	9	-	3	3	3	3	3
CO 2	9	-	3	3	3	3	3
CO 3	9	-	3	3	3	3	3
CO 4	9	-	3	3	3	3	3
$\mathrm{CO5}$	9	-	3	3	3	3	3
Weightage of the course	45	-	15	15	15	15	15
Weighted percentage of Course contribution to POs	3	0	2	2	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT41

05CT41	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	3	9	3	9
CO2	9	3	9	3	9
CO3	9	3	9	9	3
CO4	9	9	3	9	3
CO5	9	3	9	3	9
Weightage of the course	45	21	39	27	33
Weighted percentage of Course contribution to POs	7	2	4	5	4

Online Resources

1. Intervals in R - https://www.youtube.com/watch?v=qDDkdjNt7h0
2. Sequences - https://www.youtube.com/watch?v=m5Yn4BdpOV0
3. Cauchy's limit theorems - https://www.youtube.com/watch? $\mathrm{v}=\mathrm{J} 1 \mathrm{TrGerO7Yg}$
4. Test of Series - https://www.youtube.com/watch?v=nC_IU1IzzS4
5. Alternative series - https://www.youtube.com/watch?v=DRO1kPT4iS8

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III $:$ Core Theory		
Course Title $:$ Dynamics		
SEMESTER - IV		
Course Code: 05CT42	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc. Mathematics students to provide a strong foundation on the concepts in Dynamics.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	study the basic concepts path, range, height and time of flight of the projectile.	K 1
$\mathbf{C O} \mathbf{2}$	study the concepts of Collision of elastic bodies and loss of kinetic energy.	K_{2}
$\mathbf{C O ~ 3}$	study the concepts of Simple Harmonic Motion (S.H.M) and simple pendulum. Also using these to find the composition of two S.H.M .	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O ~ 4}$	understand the concept of Central Orbits and find the velocity, acceleration and pedal equations.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	study the concept of Moment of inertia and find the Moment of inertia of different objects.	$\mathrm{K}_{1,}, \mathrm{~K}_{3}$

Syllabus

UNIT-I	Projectiles - path of the projectile, range, etc. - velocity of the projectile in magnitude and direction at the end of time t - range on an inclined plane - enveloping parabola.	(15 Hrs)
UNIT-II	Collision of elastic bodies - fundamental laws of impact - impact of a smooth sphere on a fixed smooth plane - direct impact of two smooth spheres - oblique impact of two smooth spheres - loss of kinetic energy due to direct and oblique impact of two smooth spheres.	(15 Hrs)
UNIT- III	Simple Harmonic Motion - solution of S.H.M equation - geometrical representation of S.H.M - composition of two simple harmonic motions. Simple pendulum - equivalent simple pendulum - seconds pendulum.	(15 Hrs)
UNIT- IV	Central orbits - velocity and acceleration in polar coordinates - differential equation of a central orbit - pedal equation of a central orbit - pedal equations of some well-known curves -	(15 Hrs)

	velocities in central orbits.	
UNIT- V	Moment of inertia - theorems on parallel and perpendicular axes - moments of inertia in some particular cases - Dr. Routh's rule.	$\mathbf{(1 5 ~ H r s)}$

Text Book

Dynamics by M.K. Venkataraman - Agasthiar Publications Trichy (Eighteenth edition, JAN-2017)
Chapters: 6, 8 (sections 8.1 to 8.8), 10, $11 \& 12$.

Reference Book

Mechanics by P.Duraipandian, LaxmiDuraipandian, S.Chand and company

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT42

05CT42	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	--	3	9	3	3	9
CO2	9	--	3	9	3	3	9
CO3	9	--	3	9	3	3	9
CO4	9	--	3	9	3	3	9
CO5	9	--	3	9	3	3	9
Weightage of the course	45	-	15	45	15	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	2	5	5

Mapping of CO with PSO
CO - PSO Mapping for Course Code: 05CT42

05CT42	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9
CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

https://youtu.be/c2LXHhi4IYQ Resultant velocity https://youtu.be/zwd-cUGqk0s relation b/w linear velocity and angular velocity https://youtu.be/3Pb9uPmzZ0k Projectile Motion https://youtu.be/ED6F8u_sLC4 Simple Harmonic Motion https://youtu.be/qQgOevn-0WQ Collision of Elastic bodies (Direct Impact) https://youtu.be/0wlsSN9R2JQ Collision of Elastic Bodies (Oblique Impact) https://youtu.be/scDfAyGi_R8 moment of inertia
https://youtu.be/Utst-Wc-Oj0 Radial \& Transverse Velocity

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		
Course Title : Programming in C++		
SEMESTER - IV		
Course Code: 05AT41	Hours per week: 4	Credits: 3
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the II B.Sc Mathematics students to provide the strong foundation on concepts Programming in C ++

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the basic concepts of object Oriented programming (OOP).	K 1
$\mathbf{C O}$ 2	understand the basic concepts of functions in C++.	K_{2}
$\mathbf{C O ~ 3}$	understand the basic concepts of classes and objects, specifying a class and defining member function.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	understand the basic concepts ofConstructors and destructors.	K_{2}
$\mathbf{C O ~ 5}$	understand the basic concepts of inheritance and defining derived classes.	$\mathrm{K}_{1,} \mathrm{~K}_{2}$

K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Basic concept of object Oriented programming (OOP)- benefits of oop-application of OOP- operators in C++	(9 Hrs)
UNIT-II	Functions in C++-the main function -function prototyping-call by reference-return by reference- inline function - default arguments - constant arguments - function overloading - friend and virtual function - math library function	(9 Hrs)
UNIT- III	Classes and objects - specifying a class - defining member function - static data members - static member function-array of objects- friendly functions- returning objects	(9 Hrs)
UNIT- IV:	Constructors and destructors - Constructors -parameterized Constructors-multiple Constructors in a class- Constructors with default arguments- dynamic initialization of objects - copy Constructor -dynamic Constructors Constructing two-dimensional arrays - constant objects - destructors - operators overloading.	(9 Hrs)
UNIT- V:	Inheritance - defining derived classes - single inheritance - multilevel inheritance - hierarchical inheritance - hybrid inheritance - virtual base classes - abstract classes - constructors in derived classes	(9 Hrs)

Text Book

Object Oriented programming with C++ by E.Balagurusamy fourth Edition Tata Mc. Graw Hill Publishing Company Ltd, New Delhi - reprint 2016.

Unit	Chapters
1	Chapter $1(1.5-1.8)$
2	Chapter 4 $(4.1-4.12)$
3	Chapter 5 $(5.3,5.4,5.11-5.13,5.15,5.16)$
4	Chapter 6 $(6.1-6.11) \& 7(7.1-7.5)$
5	Chapter 8 $(8.1-8.11$ except 8.4$)$

Reference Book

The Complete Reference in C++ Tata Mc. Graw Hill Publishing Company Ltd, New Delhi

Mapping of CO with PO

CO - PO Mapping for Course Code: 05AT41

05AT41	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	3	3	9	3	3	3
CO2	9	3	3	9	3	3	3
CO3	9	3	3	9	3	3	3
CO4	9	3	3	9	3	3	3
CO5	9	3	3	9	3	3	3
Weightage of the course	45	15	15	45	15	15	15
Weighted percentage of Course contribution to POs	3	4	2	5	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05AT41

05AT41	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	3	9	9
CO2	3	9	3	9	9
CO3	3	9	3	9	9
CO4	3	9	3	9	9
CO5	3	9	3	9	9
Weightage of the course	15	45	15	45	45
Weighted percentage of Course contribution to POs	2	5	2	9	5

Online Resources

1. https://www.youtube.com/watch?v=OFKk8fB0MjQ - Introduction to C++
2. https://www.youtube.com/watch? v=wlXCFNuVjBY - Classes \& Objects Introduction
3. https://www.youtube.com/watch?v=ATTClHbnhIk - Functions
4. https://www.youtube.com/watch? v=joAiZx3g5vk - Contractors
5. https://www.youtube.com/watch?v=1MGxvwcsK8g\&t=5s - Inheritance

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Practical		
Course Title $:$ Practical Programming in C++		
Course Code:	05AP42	Hours per week: 2

Preamble

This course is offered for the II B.Sc Mathematics students to provide the strong foundation to write programs in $\mathrm{C}++$.

List of Problems for Lab Object Oriented Programming with C++: practical

1. Program to convert Fahrenheit into Celsius.
2. Program to swap two numbers without third variable.
3. Program to find whether the given year is leap or not using 'if...else...' statement.
4. Program to find the commission of sales using 'simple if' statement.
5. Program to print odd numbers up to a range using 'while' loop.
6. Program to find the factorial of a given number using 'for' loop.
7. Program to generate Fibonacci series using 'do... while' loop.
8. Program to generate the pyramid of digits.
9. Program to check whether the given number is a perfect number or not.
10. Program to calculate nCr value using 'function'.
11. Program to explain 'function overloading'.
12. Program to find the sum of three numbers using 'class'.
13. Program to perform various arithmetic operations using 'member functions' inside the 'class'.
14. Program to display the basic details of a person using 'class'.
15. Program to explain 'static data members' of 'a class'.

Text Book

Object Oriented programming with C++ by E.Balagurusamy fourth Edition Tata Mc. Graw Hill Publishing Company Ltd, New Delhi - reprint 2016.

Reference Book

The Complete Reference in C++ Tata Mc. Graw Hill Publishing Company Ltd, New Delhi

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Skill Based Theory		
Course Title : Competitive Mathematics		
SEMESTER - IV		
Course Code: $\mathbf{0 5 S B 4 1}$	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To develop the skills of solving problems in competitive exams.

Syllabus

UNIT I:
HCF and LCM of numbers - decimal fractions.
UNIT II:
Square roots and cube roots - averages.
UNIT III:
Problems on ages - percentage.
UNIT IV:
Profit and loss - ratio and proportion.
UNIT V:
Partnership.

Text Book

Quantitative Aptitude for Competitive Examinations by Dr. R.S. Aggarwal, S. Chand \& Company Pvt. Ltd., New Delhi.

Unit	Chapters
1	Chapter 2 \& 3
2	Chapter 4 \& 6
3	Chapter 8 \& 10
4	Chapter 11 \& 12
5	Chapter 13

Reference Books

1. Quickest Mathematics - Sh.S.N.Prasad - Kiran Prabakashan Pvt. Ltd., - edition 2013.
2. Quantitative Aptitude for the CAT - Nighit K.Sinha - Pearson India education Services Pvt. Ltd., - 2017

Online Resources

https://www.slideshare.net/sivafpe/quantitative-aptitude-50079741https://www.slideshare.net/tkjainbkn/questions-of-quantitative-aptitude-tests-for-competitive-examinations-4347384, https://youtu.be/6PCTRVmu-ek https://youtu.be/_cW7_BUDYcw, https://youtu.be/EFcgxj_mz5Y https://youtu.be/LX56YfljTp8, https://youtu.be/d9BuWzlFoz8 https://youtu.be/hn9TKnr8L_8, https://youtu.be/tnc9ojITRg4 https://youtu.be/xyyejJYeILM

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : STATISTICS		
SEMESTER - V		
Course Code: $\mathbf{0 5 C T 5 1}$	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Statistics.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the basic concepts of standard deviation, moments, skewness, correlation and regression line. And also study the basic theorems.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 2	understand the concept of Probability, random variables and Boole's inequality.	K_{2}
CO 3	understand the concepts in some special distributions and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 4	illustrate sampling and Testing of Hypothesis \& apply the t-test, f-test.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 5	apply Chi-square test for population variance and goodness of fit.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
K1-Remebering $\quad \mathbf{K}_{2}$-Understanding		-Applying

Syllabus

UNIT-I	Measures of dispersion - Moments - Skewness - kurtosis- Correlation - Karl Pearson's coefficient of correlation - rank correlation - regression lines - properties of regression coefficients.	(15Hrs)
UNIT-II	Probability and random variables - probability set function - addition theorem on probability - conditional probability - independent events - Boole's inequality - random variables - discrete and continuous random variables - mathematical expectation - moment generating functions - characteristic functions.	(15Hrs)
UNIT- III	Binomial, Poisson and Normal distributions - moment generating function - mean, mode, standard deviation - recurrence relation for central moment - addition property - fitting of the distribution - area property of normal distribution - limiting cases.	(15Hrs)

UNIT- IV	Sampling - Sampling distributions - Testing of hypothesis - Tests of significance (small samples) - tests of significance based on t-test, F- test.	(15Hrs)
UNIT- V	Tests of significance based on χ^{2} - distribution-Chi-square test for population variance - goodness of fit - independence of attributes.	$\mathbf{(1 5 H r s)}$

Text Book

Statistics by Dr. S. Arumugam and Prof. A. Thangapandi Isaac, (Reprint 2013) New Gamma Publishing House, Palayamkottai.

Unit	Chapters
1	Chapter 3, 4, 6 (Section:6.1-6.3)
2	Chapter 11,12
3	Chapter 13
4	Chapter 14 (14.1 -14.3) \&15 (15.1,15.2)
5	Chapter 16

Reference Book

Mathematical Statistics by J.N. Kapur and H.S. Saxena, S.Chand \& Company Pvt. Ltd, New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT51

05CT51	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	9	3	9
CO2	9	-	3	9	9	3	9
CO3	9	-	3	9	9	3	9
CO4	9	-	3	9	9	3	9
CO5	9	-	3	9	9	3	9
Weightage of the course	45	-	15	45	45	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	6	5	5

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT51

05CT51	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9
CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

https://nptel.ac.in/courses/111/105/111105041/ (Online course)
https://www.youtube.com/watch?v=3v6mYNPyDoY (Standard Deviation)
https://www.youtube.com/watch?v=d5aHrXH9Z50 (Correlation)
https://www.youtube.com/watch? $\mathrm{v=aztcS}-3 \mathrm{MwH} 0$ (Regression and Correlation Examples)
https://www.youtube.com/watch?v=dOr0NKyD31Q\&vl=en (Random variable)
https://www.youtube.com/watch?v=BR1nN8DW2Vg (Binomial and Poisson distribution)
https://www.khanacademy.org/math/statistics-probability/modeling-distributions-of-data/more-on-normal-distributions/v/introduction-to-the-normal-distribution (Normal distribution)
https://www.youtube.com/watch?v=e4MLGaTYvBo (T-test, F-test)
https://www.khanacademy.org/math/ap-statistics/chi-square-tests/chi-square-goodness-fit/v/goodness-of-fitexample (Goodness of fit)
https://www.youtube.com/watch?v=1Ld15Zfcm1Y (chi square test)

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : MODERN ALGEBRA		
Course Code: 05CT52	Hours per week: 5	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III year students to provide the strong foundation on concepts Modern Algebra

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the Relations and Mappings	K 1
CO 2	understand the groups and its properties	K_{2}
CO 3	apply the properties of a group in the Order of an element	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 4	understand the Isomorphism and apply it in theorems	K_{2}
CO 5	understand the elementary properties of Rings and ideals	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Relations and Mappings	$\mathbf{(1 5 ~ H r s)}$
UNIT-II	Definition of groups - examples - elementary - properties - permutation groups - subgroups.	$\mathbf{(1 5 ~ H r s)}$
UNIT- III	Order of an element - Cosets and Lagrange's theorem - normal sub groups - quotient groups.	$\mathbf{(1 5 ~ H r s) ~}$
UNIT- IV	Isomorphism and homomorphism of groups	$\mathbf{(1 5 ~ H r s)}$
UNIT- V	Rings - definition - elementary properties - isomorphism - types of rings - characteristics of ring - subrings and ideals - quotient rings - maximal and prime ideals	$\mathbf{(1 5 ~ H r s)}$

Text Book

Modern Algebra by Dr.S. Arumugam and prof. A. Thangapandi Isaac, Scitech Publication Pvt. Ltd., Chennai - Reprint 2020.

Unit	Chapters
1	Chapter 2 $(2.1-2.5)$
2	Chapter 3 $(3.0-3.5)$
3	Chapter 3 $3.7-3.9)$
4	Chapter 3 $(3.10-3.11)$
5	Chapter $4(4.1-4.9)$

Reference Book

Modern Algebra by M.L. Santiago, Tata McGraw Hill publishing Company Pvt. Ltd., New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT52

05CT52	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45		15		15		15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT52

05CT52	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO 2	3	9	9	3	9
CO 3	3	9	9	3	9
CO 4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

1. Relations \& mappings - https://www.youtube.com/watch?v=OxZ0JL4Bjzk
2. Groups - https://www.youtube.com/watch?v=yHq_yzYZV6U
3. Order of an element - https://www.youtube.com/watch? v=OWTKYLAEYvY
4. Isomorphism \& Homomorphism - https://www.youtube.com/watch?v=yLW8WPPv03M
5. Rings - https://www.youtube.com/watch?v=j_f7O-4Rb9U

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : REAL ANALYSIS		
SEMESTER - V		
Course Code: 05CT53	Hours per week: 5	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in pure analysis.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the concepts of sets and its properties of elements.	K_{1}
$\mathbf{C O ~ 2 ~}$	obtain the concepts of Open \& Closed sets and its properties.	K_{2}
$\mathbf{C O ~ 3}$	develop the concepts about the metric on sets, spaces and functions.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	examine the concepts of metric on connected spaces and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	evaluate the concepts on compact metric spaces and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

$$
\text { K1-Remebering } \quad \mathbf{K}_{2} \text {-Understanding } \quad \mathbf{K}_{3} \text {-Applying }
$$

Syllabus

UNIT-I	Countable sets - uncountable sets - inequalities of Holder and Minkowski. Metric spaces - definition and examples - bounded sets in a metric space - open ball in a metric space - open sets.	$(\mathbf{1 5 ~ H r s)}$
UNIT-II	Sub spaces - interior of a set - closed sets - closure - limit point - dense sets.	$\mathbf{(1 5 ~ H r s)}$
UNIT- III	Complete metric space - Baire's category theorem - continuity - homeomorphism - uniform continuity.	$\mathbf{(1 5 ~ H r s)}$
UNIT- IV	Connectedness - definition and examples - connected subsets of R - connectedness and continuity.	$\mathbf{(1 5 ~ H r s)}$
UNIT- V	Compactness - compact space - compact subsets of R - equivalent characterization for compactness - compactness and continuity.	$\mathbf{(1 5 ~ H r s)}$

Text Book

Modern Analysis by Dr.S. Arumugam, and A. Thangapandi Issac, New Gamma Publishing House - First reprint 2019.

Unit	Chapters
1	Chapter 1 $(1.2-1.4) \& 2(2.1-2.4)$
2	Chapter 2 $(2.5-2.10)$
3	Chapter 3 $(3.1-3.2) \& 4(4.1-4.3)$
4	Chapter 5 $(5.1-5.3)$
5	Chapter 6 $(6.1-6.4)$

Reference Book

Principles of Real Analysis by Chandra Sekara Rao.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT53

05CT53	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	3	3	3	3
CO2	9	-	3	3	3	3	3
CO3	9	-	3	3	3	3	3
CO4	9	-	3	3	3	3	3
CO5	9	-	3	3	3	3	3
Weightage of the course	45	-	15	15	15	15	15
Weighted percentage of Course contribution to POs	3	0	2	2	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT53

05CT53	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	3	9	3	9
CO2	9	3	9	3	9
CO3	9	3	9	9	3
CO4	9	9	3	9	3
CO5	9	3	9	3	9
Weightage of the course	45	21	39	27	33
Weighted percentage of Course contribution to POs	7	2	4	5	4

Online Resources

1. https://www.youtube.com/watch?v=p0bKyR9fjFI - Countable sets - Introduction
2. https://www.youtube.com/watch?v=etP21xln8iQ - Metric spaces
3. https://www.youtube.com/watch?v=X_weB_pYMV4 - Complete Metric space
4. https://www.youtube.com/watch?v=DHPHlxWHe3w - Connectedness
5. https://www.youtube.com/watch?v=L2Mfyi74ykM - Compactness

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
SEMESTER - V		
Course Title : STATICS		
Course Code: 05CT54	Hours per week: 6	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in Statics.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} 1$	remember the parallelogram law, triangle law, Lami's theorem and resolved parts.	$\mathrm{K}_{1,} \mathrm{~K}_{2}$
$\mathbf{C O} \mathbf{2}$	explain the concept of like and unlike parallel forces, condition of equilibrium, Varigon's theorem and couples.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
$\mathbf{C O ~ 3}$	interpret the concept of system of coplanar forces and equation to the line of action of the resultant and apply it to various problems.	$\mathrm{K}_{2,}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4}$	illustrate the concept of Friction, laws of friction and equilibrium of a body and rough inclined plane and apply these concept problems	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	understand the concept of equilibrium of strings, equation of common catenary and geometrical properties of catenary, apply it to various problems.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$

$\mathbf{K} 1$-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{3}$-Applying

Syllabus

UNIT-I	Forces acting at a point - parallelogram law of forces - triangle law of forces - polygon law of forces - Lami's theorem $-(\lambda-\mu)-$ theorem - resolution of forces - components of forces - resolved parts - resultant of any number of forces acting at a point - condition of equilibrium of any number of forces acting at a point.	$(\mathbf{1 8 H r s})$
	Parallel forces and moments - resultant of two like and unlike parallel forces - conditions of equilibrium of three coplanar parallel forces moment of a force - geometrical representation of moment - Varignon's theorem - generalized theorem - moment of a force about an axis - couple - equilibrium of two couples - equivalence of two couples - couples in parallel planes - resultant of coplanar couples - resultant of a couple and a force.	$(\mathbf{1 8 H r s)}$
UNIT- III	Equilibrium of three forces acting on a rigid body - conditions of	$\mathbf{(1 8 H r s)}$

	equilibrium - two trigonometrical theorems - solving statical problems (simple problems) - coplanar forces - reduction of coplanar forces - conditions for a system of coplanar forces to reduce to a single force or to a couple - equation to the line of action of the resultant - conditions of equilibrium of a system of coplanar forces (simple problems only).	
UNIT- IV	Friction - statical, dynamical and limiting friction - laws of friction - co-efficient of friction - angle of friction - cone of friction - equilibrium of a particle on a rough inclined plane - equilibrium of a body on a rough inclined plane under a force parallel to the plane - equilibrium of a body on a rough inclined plane under any force.	(18Hrs)
UNIT- V	Equilibrium of strings - equation of the common catenary - tension at any point - important formulae - geometrical properties of the catenary -approximations - parabolic catenary - suspension bridge.	(18Hrs)

Text Book

Statics by M.K. Venkataraman - (Chapters: 1, 2, 3, 4, 5, 6, 7 \& 11), Agasthiar publications Trichy (Eighteenth edition, AUG-2016).

Reference Book

Mechanics by P.Duraipandian, Laxmi Duraipandian, S. Chand and company Pvt. Ltd., New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT54

05CT54	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	--	3	9	9	3	9
CO2	9	--	3	9	9	3	9
CO3	9	--	3	9	9	3	9
CO4	9	--	3	9	9	3	9
CO5	9	--	3	9	9	3	9
Weightage of the course	45	-	15	45	45	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	6	5	5

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT54

05CT54	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9
CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course Weighted percentage of Course contribution to POs	15	45	45	15	45

Online Resources

Unit : I https://youtu.be/hPo3FI ZQdY, https://youtu.be/QR3hWAmvfl0
Unit: II https://youtu.be/7CT71KheA-I, https://youtu.be/mfz5riQ zxU, https://youtu.be/ThRrY9zt-dw https://youtu.be/mGgBOGF6sXc
Unit III https://youtu.be/j8qz1rAyfxo, https://youtu.be/QAgwJYOaDqM, https://youtu.be/0lbEe-1XJtY Unit IV https://youtu.be/ZNpCJ9H1xVE, https://youtu.be/nwu7pvwFM2E, https://youtu.be/m5nVQ1gG1v0 Unit V https://youtu.be/qi8QgYL0T8E, https://youtu.be/Nfb Om4X3IE, https://youtu.be/kY9DA6FI3R8 https://youtu.be/RcVbYTJMvOs, https://youtu.be/caTaBeKUh-U, https://youtu.be/J 7AcAkle 4

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		
Course Title $\boldsymbol{\text { LINEAR PROGRAMMING }}$		
Course Code: 05EP5A		Hours per week: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 5

Preamble

To enable the students to acquire the basic knowledge in LINEAR PROGRAMMING.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	gain the basic concepts \&ideas of LPP, forming mathematical model and solving LPP by graphically.	K1, K3
$\mathbf{C O}$ 2	obtain the optimal solution for more than two variables in LPP by using simplex method.	K2
$\mathbf{C O ~ 3}$	apply dual problem method to reduce the complexity of solving LPP.	K2
$\mathbf{C O ~ 4 ~}$	learn the various methods to solve transportation problem and find feasible \& optimal solution.	K3
$\mathbf{C O ~ 5}$	acquire fundamental knowledge and to find the optimal solution for assignment problem and game theory.	K3

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{3}$-Applying

Syllabus

UNIT-I	Linear Programming Problem - mathematical formulation of the problem - LPP-graphical solution method - some exceptional cases - general LPP - canonical, standard forms of LPP.	(15 Hrs)
UNIT-II	LPP-simplex method - fundamental properties of solutions - the computational procedure - use of artificial variables - two phase method -penalty (Big-M) method.	(15 Hrs)
UNIT- III	Duality in linear programming - general primal-dual pair - formulating dual problem - primal-dual pair in matrix form - duality and simplex method.	(15 Hrs)
	Transportation problem (TP) - general transportation problem - the transportation table - duality in transportation table - loops in transportation tables - formulation of the TP - solution of a TP - north west corner method - least cost method - Vogel's approximation method	(15 Hrs)
UNIT- degeneracy in TP - transportation algorithm (modi method) -		
unbalanced TP.		

	dominance property	

Text Book

Operations Research by Kanti Swarup, P.K.Gupta, Man Mohan. Publisher: Sultan Chand \& sons company Pvt. Ltd., New Delhi - $17^{\text {th }}$ Edition 2014.

Unit	Chapters
1	Chapter 2 (Section: 2.1-2.4) \& Chapter 3 (Section: 3.1-3.5)
2	Chapter 4 (Section: 4.1-4.4)
3	Chapter 5 (Section: 5.1-5.4, 5.7)
4	Chapter 10 (Section: 10.1-10.2, 10.4-10.6, 10.8,10.9, 10.12, 10.13, 10.15 (unbalanced problem))
5	Chapter 11 (Section: 11.1-11.4) \& Chapter 17 (Section: 17.1-17.7)

Reference Book

Operations Research by J.K.Sharma, Macmillan Publication India Pvt. Ltd., New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05EP5A

05EP51	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	3	3	3
CO2	9	-	3	9	3	3	3
CO3	9	-	3	9	3	3	3
CO4	9	-	3	9	3	3	3
CO5	9	-	3	9	3	3	3
Weightage of the course	45	-	15	45	15	15	15
Weighted percentage of Course contribution to POs	3	0	2	5	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05EP5A

05EP51	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO 2	9	9	3	9	9
CO 3	3	3	3	3	9
CO 4	9	9	9	3	3
CO5	9	3	3	3	3
Weightage of the course	39	33	27	21	27
Weighted percentage of Course contribution to POs	6	4	3	4	3

Online Resources

Graphical Method :https://youtu.be/O6QO3J_85as
https://www.slideshare.net/kratikadhoot/graphical-method-17041901,

Simplex Method: https://www.slideshare.net/luckshaybatra/big-m-method-50087400, https://youtu.be/zJhncZ5XUSU, https://youtu.be/MZ843Vvia0A, https://youtu.be/SNc9NGCJmns https://youtu.be/SNc9NGCJmns , https://www.slideshare.net/sachin.mk/simplex-method Dual Simplex method: https://youtu.be/KLHWtBpPbEc , https://www.slideshare.net/HishamAlKurdi1/operations-research-the-dual-simplex-method Transportation Problem: https://youtu.be/ItOuvM2KmD4, https://www.slideshare.net/VishalHotchandani2/transportation-problems-183454172
Assignment Problem: https://youtu.be/rrfFTdO2Z7I https://www.slideshare.net/NakulBhardwaj1/assignment-problem-52928205https://www.slideshare.net/abubashars/assignment-problem-18034506
Game theory: https://youtu.be/fSuqTgnCVRg, https://youtu.be/YJvbxAvxkDc https://youtu.be/KUskbAasVCY , https://www.slideshare.net/kapooranushka/game-theory-ppt-44074043

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		
Course Title : Combinatorics		
Course Code: 05EP5B	Hours per week: 5	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Combinatorics.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	relate and apply sum and product rules.	K1, K3
CO 2	analyze and solve problems related to Permutation and Combination.	K3
CO 3	make use of Inclusion-Exclusion Principle to solve problems on generalized permutation and combination	K3
CO 4	demonstrate ordinary and exponential generating functions	K2
CO 5	solve the problems using Recurrence Relations.	K3

Text Book

Balakrishnan. V.K., 1995, Theory and Problems of Combinatorics, Schaum's Outline Series, McGrawHill, Inc., Singapore.

Unit	Chapter/Sections
I	Chapter 1(1.1,1.3)
II	Chapter 1(1.2)
III	Chapter 2 (2.1, 2.3)
IV	Chapter 3 (3.1)
V	Chapter 3 (3.3)

Reference Books

1. Alan Tucker, 2012, Applied Combinatorics, 6th Edition, Wiley, New Jersey.
2. Ralph P. Grimaldi, and Ramana. B.V., 2004, Discrete and Combinatorial Mathematics, Pearson Education, Inc., Copyright 2007, Dorling Kindersley (India) Pvt.Ltd.
3. Krishnamurthy. V., 1985, Combinatorics Theory and Applications, East- West Press Pvt. Ltd.,

Mapping of CO with PO

CO - PO Mapping for Course Code: 05EP5B

05EP5B	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	3	3	-	3	-	3
CO2	9	3	3	-	3	-	3
CO3	9	3	3	-	3	-	3
CO4	9	3	3	-	3	-	3
CO5	9	3	3	-	3	-	3
Weightage of the course	45	15	15	0	15	0	15
Weighted percentage of Course contribution to POs	3	3	2	0	2	0	1

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05EP5B

05EP5B	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	3
CO4	9	9	9	3	3
CO5	9	9	9	3	3
Weightage of the course	45	45	45	15	15
Weighted percentage of Course contribution to POs	6	4	4	3	2

Online Resources

Unit I https://www.slideshare.net/rafayfarooq/combinatorics-15052419, https://voutu.be/8tjKH ODkj0
Unit II https://www.slideshare.net/PuruAgrawal/permutation-combination-34818145,
https://youtu.be/b5bOWQ7VpsE
Unit III https://slideplayer.com/slide/9741448/,
https://www.powershow.com/view/1c9d3-
$\mathrm{Nzc} 3 \mathrm{Y} /$ Generalized Permutations and Combinations powerpoint ppt presentation, https://youtu.be/ kmhJgBbUwl
Unit IV https://www.slideshare.net/preethicsekongu/generating-function-121065926,
https://youtu.be/YSMRaMZaySw
Unit V https://www.slideshare.net/chinnucheela/recurrence-relations, https://voutu.be/MB Gy2HIMhU

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Skill Based Theory		
Course Title : Quantitative Aptitude		
SEMESTER - V		
Course Code: 05SB51	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To develop the skills of solving problems in Competitive Exams.

Syllabus

Unit-I:
Time and work - time and distance
Unit -II:
Problems on trains
Unit - III:
Simple interest -compound interest
Unit - IV:
Logarithms - calendar
Unit - V:
Clocks - stocks and shares.

Text Books

Quantitative Aptitude for competitive examinations by Dr. R.S.Aggarwal, Tata MC. Graw Hill publication, New Delhi, Reprint 2011.

Units	Chapters
1	Chapter 15 \& 17
2	Chapter 18
3	Chapter 21 \& 22
4	Chapter 23 \& 27
5	Chapter 28 \& 29

Reference Books

1. Quickest Mathematics - Sh.S.N.Prasad - Kiran Prabakashan Pvt. Ltd., - edition 2013.
2. Quantitative Aptitude for the CAT - Nighit K.Sinha - Pearson India education Services Pvt. Ltd., - 2017

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Common Subject Theory		SEMESTER - V
Course Title $:$ Environmental studies		
Course Code: ESUG51	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

- Disseminate information of Environment of national and international issues
- Environmental consciousness creation among the students
- Facilitation of environmental leadership among students

Syllabus

Unit-I:
Introduction - Nature, scope and importance of Environmental studies - Natural Resources and conservation - forest, water and energy.

Unit-II:

Ecosystem - concept - structure and function, energy flow, food chain, food web and ecological pyramids

Unit-III:

Biodiversity - definition, types - values - India, a mega diversity zone - Hotspots - Endangered and endemic species - threat to biodiversity and conservation

Unit-IV:

Environmental pollution - Air pollution- causes and effect - Ozone depletion - Global warming acid rain - Water pollution - Noise pollution - Solid waste management - Nuclear hazard

Unit-V:

Human population and the environment - Population growth - variation among nations - effects of population explosion - family welfare programme - environment and human health.

Text Book

Environment studies by R.Murugesan, 2009 edition, Milleneum Publication., Madurai-16.

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		
Course Title : LINEAR ALGEBRA		
SEMESTER -VI		
Course Code: 05CT61	Hours per week: 5	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Linear Algebra.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} 1$	understand the basics concept in vector space and linear transformation.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
$\mathbf{C O}$ 2	understand the inner product space \& develop the concepts of vector inner product spaces in orthogonal and orthogonal complement.	$\mathrm{K}_{1,}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 3}$	explain the theory of matrices and different types and also apply to solve the inverse of a matrix and rank of a matrix.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	understand the simultaneous linear equation and apply to it in eigen values \& eigen vectors.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	illustrate the matrix of a linear transformation and apply the bilinear forms and quadratic forms.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Vector spaces - definition and examples - subspaces - linear transformation - span of a set - linear independence - basis and dimension - rank and nullity.	(15 Hrs)
UNIT-II	Inner product spaces - definition and examples - orthogonality - orthogonal complement.	$\mathbf{(1 5 ~ H r s)}$
UNIT- III	Theory of matrices - algebra of matrices - types of matrices - the inverse of a matrix - elementary transformations - rank of a matrix.	$\mathbf{(1 5 ~ H r s) ~}$
UNIT- IV	Simultaneous linear equations - characteristic equation - Cayley Hamilton theorem - eigen values and eigen vectors.	$\mathbf{(1 5 ~ H r s) ~}$
UNIT- V	Matrix of a linear transformation - relation between multiplication of matrices and the composition of their linear transformations - bilinear forms - quadratic forms.	$\mathbf{(1 5 ~ H r s)}$

Text Book

Modern Algebra by Dr.S. Arumugam and A. Thangapandi Issac, (Reprint 2018) Scitech Publications, Chennai.

Unit	Chapters
1	Chapter 5 (Section: 5.1-5.7)
2	Chapter 6
3	Chapter 7 (Section: 7.1-7.5)
4	Chapter 7 (Section: 7.6-7.8)
5	Chapter 5 (Section: 5.8) \& 8

Reference Book

Linear Algebra by S.kumaresan, Prentice publications.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT61

05CT61	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	--	3	9	9	3	9
CO2	9	--	3	9	9	3	9
CO3	9	--	3	9	9	3	9
CO4	9	--	3	9	9	3	9
CO5	9	--	3	9	9	3	9
Weightage of the course	45	-	15	45	45	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	6	5	5

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT61

05CT61	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9
CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

https://nptel.ac.in/courses/111/106/111106051/ (Online Course)
https://nptel.ac.in/courses/111/104/111104137/ (Online Course)
https://nptel.ac.in/courses/111/101/111101115/ (Online Course)
https://www.youtube.com/watch?v=XDvSsDsLVLs (Vector Space)
https://www.youtube.com/watch?v=UUmoluM0D-M (Inner Product Space)
https://www.youtube.com/watch?v=IxIl0xpLf1A (Matrix)
https://www.khanacademy.org/math/linear-algebra/alternate-bases/eigen-everything/v/linear-algebra-
introduction-to-eigenvalues-and-eigenvectors (Eigen Values and Eigen Vectors)
https://www.youtube.com/watch?v=9t_c0G_Dcfg (Bilinear Form)

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Core Theory		SEMESTER - VI
Course Title : COMPLEX ANALYSIS		
Course Code: 05CT62	Hours per week: 6	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in complex analysis.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O}$ 1	understand the basics in transformations or mappings on complex field among two different fields.	K_{1}
$\mathbf{C O}$ 2	obtain the Cauchy Riemann equations on analytic functions and its applications for some standard theorems.	K_{2}
$\mathbf{C O ~ 3}$	develop the concepts in Cauchy theorems in complex integrations and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4}$	analysis the series expansions of different types and the concepts of singularities with its applications.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O ~ 5}$	evaluate the concepts of residues on analytic functions and the development of contour theorems using residues.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$

K1-Remebering	\mathbf{K}_{2}-Understanding	\mathbf{K}_{3}-Applying
Syllabus		

UNIT-I	Elementary transformations - bilinear transformations - cross ratio - fixed points of a bilinear transformation -bilinear transformations which map the real axis onto itself, unit circle onto itself, real axis onto the unit circle.	(18 Hrs)
UNIT-II	Cauchy Riemann equations - complex form of C.R. equations - C.R. equations in polar co-ordinates - analytic functions - harmonic functions - Laplace equation - finding conjugate harmonic of an analytic function - Milne-Thompson method.	(18 Hrs)
	Complex integration - definite integral - length of a curve - Cauchy's theorem - simply connected and multiply connected regions - Cauchy's integral formula -maximum modulus theorem - higher derivatives - derivative of an analytic function is analytic - Cauchy's inequality - Liouville's theorem - fundamental theorem of algebra - Morera's theorem.	(18 Hrs)
UNIT- III	Series expansions - Taylor's theorem - Taylor's series - Maclaurin’s series -Laurent's theorem - Laurent's series - zeros of an analytic function - order of a zero - singular points - isolated singularity - removable singularity - poles - order of a pole-simple pole - double pole - essential singularities.	(18 Hrs)

UNIT- V	Calculus of residues - residues - Cauchy's residue theorem - argument theorem - Rouche's theorem - fundamental theorem of algebra - evaluation of definite integrals - contour integration (problems only).	(18 Hrs)

Text Book

Complex Analysis by Dr.S. Arumugam, A. Thangapandi Issac and A.Somasundaram. Scitech Publication, Chennai - Reprint 2017.

Unit	Chapter/Sections
I	Chapter 3 (3.1-3.5)
II	Chapter 2(2.6-2.8)
III	Chapter 6 (6.1-6.4)
IV	Chapter 7 $7.1-7.4)$
V	Chapter 8 $(8.1-8.3)$

Reference Books

1. Complex Analysis by Dr.T.K. Manickavachagampillay, S.Viswanathan printers and publishers Pvt. Ltd.
2. Complex Analysis by Dr. Durai Pandian and others. Emerald Publishers, Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05CT62

05CT62	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	3	3	3
CO2	9	-	3	9	3	3	3
CO3	9	-	3	9	3	3	3
CO4	9	-	3	9	3	3	3
CO5	9	-	3	9	3	3	3
Weightage of the course	45	-	15	45	15	15	15
Weighted percentage of Course contribution to POs	3	0	2	5	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05CT62

05CT62	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	3
CO2	3	9	9	3	3
CO3	3	9	9	3	3
CO4	3	9	9	3	3
CO5	3	9	9	3	3
Weightage of the course	15	45	45	15	15
Weighted percentage of Course contribution to POs	2	5	5	3	2

Online Resources

1. https://www.youtube.com/watch?v=WGq0PgUR_2Q - Bilinear transformation
2. https://www.youtube.com/watch?v=uguhyTIHQRk - conformal mappings
3. https://www.youtube.com/watch?v=G7b9NeujYPo - Residues in Complex Analysis
4. https://www.youtube.com/watch? $\mathrm{v}=2 \mathrm{Ka} 7 \mathrm{oHTONhc}$ - Cauchy residues theorem
5. https://www.youtube.com/watch? v=YK1Cq_qEFGo - Contour integration

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		
Course Title : GRAPH THEORY		
SEMESTER - VI		
Course Code: 05EP6A	Hours per week: 5	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Graph Theory.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	remember the basic definitions like Graphs, Sub graphs, Degree of a vertex, Covering and Independent sets	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 2	understand the facts and idea by the Degree sequence, Graphic sequence, connectedness of a graph.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
$\mathbf{C O} 3$	give the description to the concept of Eulerian and Hamiltonian graphs and apply it to find whether the given graph is Eulerian or Hamiltonian.	$\mathrm{K}_{2,}, \mathrm{~K}_{3}$
CO 4	understand the concept of Matching apply it to prove the theorem like Halls marriage theorem.	$\mathrm{K}_{2,}, \mathrm{~K}_{3}$
CO 5	classify the concept of Colourability and chromatic number and apply it to solve problems like Four Colour Problem.	$\mathrm{K}_{2,}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

	Graphs and subgraphs - definition and examples - degrees - sub GNIT-I graphs - isomorphism between graphs - Ramsey numbers - independent sets and coverings - intersection graphs and line graphs - matrix of a graph - operations on graphs.	$(\mathbf{1 5 ~ H r s)}$
UNIT-II	Degree sequences - graphic sequences - connectedness - walks, trails and paths - connectedness and components - blocks - connectivity.	$\mathbf{(1 5 ~ H r s) ~}$
UNIT- III	Eulerian graphs - Hamiltonian graphs - trees - characterization of trees - centre of a tree.	$\mathbf{(1 5 ~ H r s) ~}$
UNIT- IV	Matchings - matchings in bipartite graphs - planarity - definition and properties - characterization of planar graphs - thickness, crossings and outer planarity.	$\mathbf{(1 5 ~ H r s)}$

UNIT- V

> Colourability - chromatic number and chromatic index - five colour theorem - four colour problem - chromatic polynomials.

Text Book

An invitation to Graph Theory by Dr. S. Arumugam \& S. Ramachandran, (Chapter: 2, 3, 4, 5, 6, 7, 8, 9) (2013 Edition) Scitech Publishing Company, Chennai.

Reference Book

Graph Theory by Frank Harary, Publisher, Addison - Wesley Publishing Company, New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05EP6A

05EP6A	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	-	3	-	3
CO2	9	-	3	-	3	-	3
CO3	9	-	3	-	3	-	3
CO4	9	-	3	-	3	-	3
CO5	9	-	3	-	3	-	3
Weightage of the course	45	-	15	-	15	-	15
Weighted percentage of Course contribution to POs	3	0	2	0	2	0	2

Mapping of CO with PSO
CO - PSO Mapping for Course Code: 05EP6A

05EP6A	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9
CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

https://youtu.be/f1JTtMP6NGw (Graph Theory: Introduction)
https://youtu.be/E40r8DWgG40 (Basic concepts in Graph theory)
https://youtu.be/kKoIABvlmfY (Bipartite Graph)
https://youtu.be/Gc8emFk-2vc (Vertex cover and independent set)
https://youtu.be/leAsOJZvcVo (Connected/Disconnected Graph)
https://youtu.be/LV4VgNWiZTA (Subgraphs - Spanning \& Induced Subgraphs)
https://youtu.be/lk5-dlvUhLE (Graph Isomorphism with example) https://youtu.be/xqA158pDduk (Hamiltonian Graph with example) https://youtu.be/ZlMirH-YQcU (Eulerian Graph with example) https://youtu.be/HmQR8Xy9DeM (Graph theory)

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		SEMESTER - VI
Course Title : Cryptography		
Course Code: 05EP6B	Hours per week: 5	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Cryptography.
Course Outcomes (CO)
On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	recall the fundamentals of cryptography	K1
CO 2	demonstrate standard cryptographic algorithms used to analyze confidentiality, integrity and authenticity.	K2,K3
CO 3	list and Identify the security issues in the network, key distribution and management schemes.	K1, K3
CO 4	design encryption techniques to secure data in transit networks.	K3
CO 5	evaluate security mechanisms in theory of networks	K3

K1-Remebering $\quad \mathbf{K}_{2}$-Understanding $\mathbf{K}_{\mathbf{3}}$-Applying

Syllabus

UNIT-I	Introduction: Security goals - Cryptographic attacks - Services and mechanism -Techniques. Mathematics of Cryptography: Integer arithmetic - Modular arithmetic - Matrices -Linear congruence.	(15Hrs)
UNIT-II	Traditional symmetric - Key ciphers: Introduction - Substitution ciphers-Transposition ciphers - Stream and block ciphers.	(15Hrs)
UNIT- III	Mathematics of symmetric - Key cryptography: Algebraic structures -GF (2 ${ }^{n}$) Fields Introduction to modern symmetric - Key ciphers: Modern block ciphers - Modern stream ciphers.	(15Hrs)
UNIT- IV	Data Encryption Standard (DES): Introduction - DES structure - DES analysis - Security of DES - Multiple DES (Conventional Encryption Algorithms) - Examples of block ciphers influenced by DES.	(15Hrs)
UNIT- V	Advanced Encryption Standard (AES): Introduction Transformations - Key expansion - The AES Ciphers - Examples - Analysis of AES.	(15Hrs)

Text Book

Behrouz A. Forouzan and Debdeep Mukhopadhyay, 2013, Cryptography and Network Security, $2^{\text {nd }}$ Edition, McGraw Hill Education (India) Private Limited, New Delhi.

Unit	Chapter/Sections
I	Chapter 1(1.1-1.4), 2(2.1-2.4)
II	Chapter 3(3.1-3.4)
III	Chapter 4(4.1-4.2), 5(5.1-5.2)
IV	Chapter 6(6.1-6.6)
V	Chapter 7(7.1-7.6)

Reference Books

1. Atul Kahate, 2014, Cryptography and Network Security, Third Edition, McGraw Hill Education (India) Private Limited, New Delhi.
2. Bruce Schneier, 2012, Applied Cryptography: Protocols, Algorithms and Source code in C, 2nd Edition, Wiley India New Delhi.
3. Stallings, 2013, Cryptography and Network Security: Principles and Practice, Sixth Edition, Pearson Education, New Delhi, India.
Mapping of CO with PO
CO - PO Mapping for Course Code: 05EP6B

05EP6B	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	3	3	-	3	-	3
CO2	9	3	3	-	3	-	3
CO3	9	3	3	-	3	-	3
CO4	9	3	3	-	3	-	3
CO5	9	3	3	-	3	-	3
Weightage of the course	45	15	15	0	15	0	15
Weighted percentage of Course contribution to POs	3	3	2	0	2	0	1

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05EP6B

05EP6B	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	3
CO4	9	9	9	3	3
CO5	9	9	9	3	3
Weightage of the course	45	45	45	15	15
Weighted percentage of Course contribution to POs	6	4	4	3	2

Online Resources

https://youtu.be/sjje0UOLckg https://youtu.be/cqgtdkURzTE https://youtu.be/2aHkqB2-46k https://youtu.be/V67drkkk2aA https://youtu.be/BEb_AnPWPwY https://youtu.be/4-hqo4XzdLc https://www.slideshare.net/AfifAlMamun/introduction-to-cryptography-72587472, https://www.slideshare.net/SamBowne/ch-12-cryptography, https://www.slideshare.net/thaihongkg/cryptography-and-applications

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		SEMESTER - VI
Course Title : OPERATIONS RESEARCH		
Course Code: 05EP6C	Hours per week: 6	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Operation Research.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	remember the fundamental concepts of stock and its types and get more ideas about solving deterministic and probabilistic inventory model.	K 1
$\mathbf{C O}$ 2	understand the different types queuing systems and its classifications.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
$\mathbf{C O ~ 3}$	construct the network diagram and applying network models in diverse simple real life problems.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 4 ~}$	apply Sequencing techniques for processing of jobs by machines in systematic manner.	K_{3}
$\mathbf{C O ~ 5 ~}$	use the replacement policy methods, to estimate the replacement time when the value of money does not change with time and changes with time.	K_{3}

Syllabus

| UNIT-I | Inventory control - cost associated with inventories - factors
 affecting inventory control - Economic Order Quantity (EOQ) -
 deterministic inventory problems with no shortages - probabilistic
 inventory problems. | $(\mathbf{1 8 ~ H r s)}$ |
| :---: | :--- | :--- | :--- |
| UNIT-II | Queuing theory - elements of queuing system and characteristics of
 queuing system - probability distribution in queuing systems -
 classification of queuing models - Poisson queuing systems (M / M
 $/ 1):(\infty /$ FIFO), (M / M / 1) : (N / FIFO). | (18 Hrs) |
| UNIT- III | Network scheduling by PERT/CPM - network and basic
 components - logical sequence - rules of network construction -
 numbering the events - critical path analysis - probability | $(\mathbf{1 8 ~ H r s)}$ |

	consideration in PERT - distinction between PERT and CPM.	
UNIT- IV	Sequencing problems - problem of sequencing - basic terms used in sequencing - processing n jobs through two machines - processing n jobs through k machines - processing two jobs through k machines.	(18 Hrs)
UNIT- V	Replacement problem and system reliability - replacement of equipment/asset that deteriorates gradually - replacement policy when the value of money does not change with time - replacement policy when value of money changes with time.	(18 Hrs)

Text Book

Operations Research by Kanti Swarup, P.Kapur, Gupta and Man Mohan (19 ${ }^{\text {th }}$ Edition 2017), Sultan Chand \& Sons Publishers, New Delhi.

Unit	Chapters
1	Chapter 19 (Section: 19.1-19.10) and 20 (Section: 20.1-20.2)
2	Chapter 21 (Section: 21.1-21.7, 21.9 (model I\&III))
3	Chapter 25 (Section: 25.1-25.8)
4	Chapter 12 (Section: 12.1-12.6)
5	Chapter 18 (Section: 18.1-18.2)

Reference Book

Operations Research by J.K. Sharma, Mac Millan publishers, New Delhi.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05EP6C

05EP6C	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	9	3	9
CO 2	9	-	3	9	9	3	9
$\mathrm{CO3}$	9	-	3	9	9	3	9
$\mathrm{CO4}$	9	-	3	9	9	3	9
$\mathrm{CO5}$	9	-	3	9	9	3	9
Weightage of the course	45	-	15	45	45	15	45
Weighted percentage of Course contribution to POs	3	0	2	5	6	5	5

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05EP6C

05EP6C	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	9
CO2	3	9	9	3	9

CO3	3	9	9	3	9
CO4	3	9	9	3	9
CO5	3	9	9	3	9
Weightage of the course	15	45	45	15	45
Weighted percentage of Course contribution to POs	2	5	5	3	5

Online Resources

Inventory Control:https://youtu.be/PuhgTVN_E_I, https://www.slideshare.net/ganapathyramasamy94/inventory-control-119164834
Queuing Theory:https://youtu.be/Yo7LG_JeJos https://youtu.be/B xYQWHOwQk
https://www.slideshare.net/avtarsingh/queuing-theory-2129896
Network Scheduling CPM/PERT https://youtu.be/ljtGERVLF5U , https://youtu.be/sqxpd8PjwQ0 https://www.slideshare.net/jyots_mamtani/pert-cpm-12632942https://youtu.be/J1WwNKDdDC0 https://youtu.be/WrAf6zdteXI
Sequencing Problems: https://youtu.be/EwcjyxuwUkIhttps://www.slideshare.net/abubashars/sequencingproblems, https://youtu.be/qzUODIPEnxI
Replacement Problems: https://youtu.be/vKVkOpNDZ2s, https://youtu.be/g0cKRU1N-t0, https://www.slideshare.net/JimsIndia/replacement-problem

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Elective Theory		
SEMESTER - VI		
Course Title : Fuzzy Sets		
Course Code: 05EP6D	Hours per week: 6	Credits: 5
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

This course is offered for the III B.Sc. Mathematics students to provide a strong foundation on the concepts in Fuzzy Sets.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	explain the concept of fuzzy sets and crisp sets in brief	K2, K3
CO 2	understand the operations and relations in fuzzy sets	K1
CO 3	demonstrate the operations on fuzzy sets	K2
CO 4	analyze the relationship among fuzzy measures	K3
CO 5	apply fuzzy theory in Engineering, Management and Medicine	K3

K1-Remebering
\mathbf{K}_{2}-Understanding
\mathbf{K}_{3}-Applying

Syllabus

UNIT-I	Crisp Sets and Fuzzy Sets: Introduction - Crisp Sets: An Overview - The Notion of Fuzzy Sets - Basic Concepts of Fuzzy Sets - Classical Logic: An Overview - Fuzzy Logic.	$(\mathbf{(1 8 H r s})$
UNIT-II	Operations on Fuzzy Sets: General Discussion - Fuzzy Complement - Fuzzy Union - Fuzzy Intersection.	$(\mathbf{(1 8 H r s})$
UNIT- III	Fuzzy Relations: Crisp and Fuzzy Relations - Binary Relations - Binary Relations on a Single Set - Equivalence and Similarity Relations - Compatibility or Tolerance Relations - Orderings.	$(\mathbf{(1 8 H r s)}$
UNIT- IV	Fuzzy Measures: General Discussion - Belief and Plausibility Measures - Probability Measures - Possibility and Necessity Measures - Relationship among Classes of Fuzzy Measures.	$(\mathbf{(1 8 H r s)}$
UNIT- V	Applications: Engineering - Medicine - Management and Decision Making.	$\mathbf{(1 8 H r s)}$

Text Book

George J. Klir and Tina A. Folger, 2012. Fuzzy Sets, Uncertainty and Information, PHI Learning Private Limited, New Delhi - 110001.

Unit	Chapters
I	Chapter 1(1.1-1.6)
II	Chapter 2(2.1-2.4)
III	Chapter 3(3.1-3.6)
IV	Chapter 4(4.1-4.5)
V	Chapter 6(6.3-6.5)

Reference Books

1. George J. Klir and Bo Yuan. 2012, Fuzzy Sets and Fuzzy Logic Theory and Applications, PrenticeHall of India.
2. Ganesh, M. 2015, Introduction to Fuzzy Sets and Fuzzy Logic, Prentice-Hall of India.
3. Zimmermann, H.J. 1996, Fuzzy Set Theory and its Applications, Allied Publishers Ltd., Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05EP6D

05EP6D	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	3	3	-	3	-	3
CO2	9	3	3	-	3	-	3
CO3	9	3	3	-	3	-	3
CO4	9	3	3	-	3	-	3
CO5	9	3	3	-	3	-	3
Weightage of the course	45	15	15	0	15	0	15
Weighted percentage of Course contribution to POs	3	3	2	0	2	0	1

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05EP6D

05EP6D	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	9	9	9	3	3
CO3	9	9	9	3	3
CO4	9	9	9	3	3
CO5	9	9	9	3	3
Weightage of the course	45	45	45	15	15
Weighted percentage of Course contribution to POs	6	4	4	3	2

Online Resources

Fuzzy set: https://youtu.be/IZWTduVCrf8, https://youtu.be/oWqXwCEfY78
https://www.slideshare.net/guptaprashant1986/fuzzy-
setshttps://www.slideshare.net/AMITKUMAR4132/fuzzy-set-theory
Fuzzy Logic: https://youtu.be/LUz-FbwPh3Q, https://www.slideshare.net/appat/fuzzy-logic-10819010, https://www.slideshare.net/RituBafna/fuzzy-logic-ppt-8671225
Applications: https://youtu.be/aVsPJYxyq04, https://youtu.be/Nz9fpLxEtBE https://youtu.be/K7S3TgfqnX0, https://www.slideshare.net/tarekgroup/fuzzy-logic-and-its-applications-191783026https://www.slideshare.net/IldarNurgaliev/fuzzy-logic-44984554y

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Skill Based Theory		
Course Title : Advanced Statistics		
SEMESTER - VI		
Course Code: 05SB61	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To develop the skill of solving problems in Advanced Statistics.

Syllabus

Unit - I	Attributes - definition - positive and negative classes - class frequencies - dichotomization
Unit - II	Consistency of data - association of attributes.
Unit - III	Analysis of variance (ANOVA) - introduction - one way classification.
Unit - IV	Two way classification.
Unit - V	Randomized block design and latin square design.

Text Book

Statistics by Dr.S. Arumugam, New Gamma Publishing House (Reprint 2013).

Unit	Chapters
1	Chapter 8 (8.1)
2	Chapter 8 (8.2,8.3)
3	Chapter $17(17.1)$
4	Chapter $17(17.2)$
5	Chapter $17(17.3)$

Reference Book

Mathematical Statistics by Kapur and Gupta.

Online Resources

1. Attributes - https://www.youtube.com/watch?v=PoLPZ4z2R6M
2. Consistency of data - https://www.youtube.com/watch?v=Ud_3n8f5aMY
3. ANOVA - https://www.youtube.com/watch?v=ynx04Qgqdrc
4. Two way classifications- https://www.youtube.com/watch? $\mathrm{v}=\mathrm{mM} 0 \mathrm{CDCWvJcI}$
5. Latin squares design- https://www.youtube.com/watch?v=rcoeuYH-fd0

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Skill Based Theory			
Course Title : Boolean Algebra			
	SEMESTER - VI		
Course Code: 05SB62	Hours per week: 2	Credits: 2	
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks	

Preamble

To develop the skill in solving problem of Boolean algebra.

Syllabus

Unit - I:
Relations - reflexive, symmetric, transitive and equivalence relations -anti-symmetric relations partial order relations - posets - linearly ordered sets - chain.

Unit - II:

Representation of finite posets by diagrams - diagrams for M_{5} and N_{5} - zero and unit elements in a poset - greatest lower bound and least upper bound.

Unit - III:
Lattice - definition and examples - Idempotent, commutative, associative and absorption laws sublattices - distributive lattices - modular lattices.

Unit - IV:

Complemented lattices - Boolean algebra - De Morgan's laws - homomorphisms - kernel of a homomorphism - isomorphisms - ideal of a Boolean algebra.

Unit - V:

Definition of a Boolean algebra $\mathrm{B}\left(+,{ }^{*},{ }^{\prime}, 0,1\right)$ - Boolean algebra of bits - subalgebra - principles of duality - bounded and involution laws - diagrams for D_{70} and D_{210} - atoms - representation theorem.

Text Books

1. Modern Algebra by Dr. S. Arumugam and others (Reprint 2018).
2. Discrete Mathematics by Seymour Lipschutz, Mark Lipson, ($3^{\text {rd }}$ Edition) Schaum series

Unit	Text Book	Chapter/Sections
1	1	Chapter 2 (Section: 2.1-2.3)
$n n$		Chapter 9 (Section 9.1)
2		
		Chapter 9 (Section 9.5)
4	2	Chapter 15 (Section 15.4)
		Chapter 15 (Section 15.2,15.3,15.6)
5		

Reference Book

Discrete Mathematics by N.CH. S.N. Iyengar, V.M. Chandrasekar, K.A.Venkatesh, P.S.Arunachalam, Vikas publishing Home P.Ltd.

Online Resources

https://youtu.be/WauEBdi1HHg , https://youtu.be/nhKNoIAqhxE (Equivalence relation) https://youtu.be/R36F8CWAi2k, https://youtu.be/gtqbcaRMtJw (Poset) https://youtu.be/WzcsPcKIoOo, https://youtu.be/goNL-r0r7FY (Lattice) https://youtu.be/Ib82As-mnPM , https://youtu.be/UAkWtkMz8PA (Boolean Algebra)

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Skill Based Practical		SEMESTER - VI
Course Title : SPSS-Statistical package for the Social Sciences (Practical)		
Course Code: 05SB63	Hours per week: 2	Credits: 2
CIA: 40 Marks	ESE: 60 Marks	Total: 100 Marks

Syllabus

UNIT-I	Introduction of Data- Individual- Discrete and Continuous Frequency distribution - Bar Diagram- Histogram and Pie Diagram.
UNIT-II	Introduction - Measures of Central tendency : Mean, Median, Mode, Skewness and Kurtosis - Measures of Deviation- Standard Deviation and Coefficient of Variation
UNIT- III	Introduction - Correlation Coefficient - Regression Lines
UNIT- IV	Introduction -Small sample test : T test and F test - Large sample test: Z test and Non parametric test: Chi square test
UNIT- V	Introduction - One way Anova - Two Way Anova

Practical List:

1. Construct Discrete and Continuous Frequency Tables from raw data.
2. Construct Bar Diagram, Multiple Bar Diagram.
3. Construct Histogram and Pie Diagram.
4. Measure Mean, Median, Mode, Skewness and Kurtosis
5. Estimate Standard deviation and Coefficient of variation
6. Estimate Correlation Coefficient
7. Draw and find Regression Lines.
8. Test of Significance t test
9. Test of Significance F test
10. Test of Significance Z test
11. Test of Significance Non parametric test- Chi square test
12. Test of Significance of One way and Two way Anova

Text Book

Statistics by Dr. S. Arumugam and Prof. A. Thangapandi Isaac, New Gamma Publishing House, Palayamkottai. [Chapter 6,11,12,13,14 (14.1-14.3),15 \& 16]

Reference Book

Mathematical Statistics by J.N. Kapur and H.S. Saxena, S.Chand \& Company Pvt. Ltd, New Delhi.

Online Resources

https://www.slideshare.net/sspink/seminar-on-spss,
https://www.slideshare.net/profmanishparihar/introduction-to-spss-10282796

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - IV : Common Subject Theory		
Course Title : Value Education		
Course Code: VEUG61	Hours per week: 2	Credits: 2
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Syllabus

UNIT I: The heart of Education:

Introduction - Eternal Value - Integrated approach to value education - one for all and all for one Responsibilities of a citizen - Habit Vs wisdom - purifying mind pollution - Respect for all Religions Parents, teachers and fellow students - The need and benefit of exercise and meditation for students.

UNIT II: The Value of Body and Life Energy

Introduction - what are the causes for paid, Disease and death? Three Basic needs for all living Beings - Personal Hygiene Five Factors of Balance in Life - The need and benefits of physical Exercise The value and Base of Life energy - The value and Base of Bio-magnetism - You are your own best caretaker. The Marvelous nature of mind Introduction- Bio-magnetism - The base of the mind characterization of the Genetic Centre - metal frequency - practice for a creative mind - benefits of meditation.

UNIT III: Analysis of Thought

Introduction - An Exploitation on the nature of thought- six roots for thoughts - Introspection for analysis of thoughts-practical techniques for analysis of thoughts. Benefits of Blessings Effects of good vibrations - Make Blessing a Daily Habit.

UNIT IV: Moralization of Derive

Introduction - moralization of desire - Analyze your desires - Summary of practice Neutralization of Anger: Introduction - meaning - characteristics of Anger - Anger is a Destructive emotion - Anger spoils our relationship with others - Some common misconception about anger - will power and method success through awareness - method of neutralization of anger.

UNIT V: Eradication of Worries

Worry is a mental disease - Nature's Law of cause and effect - factors beyond our control - How to deal with problems - analyze your problem and eradicate worry -Harmonious Relationships Introduction Three angles of life - The value of harmony in personal relations - Love and Compassion - pleasant face and loving words - appreciation and gratitude to parents and teachers - Bringing needed reforms in educational institutions - Why should we serve others? Brotherhood - A scientific Basis for Universal Brotherhood protection of the environment - non-violence and the fivefold moral culture.

Text Book

Value Education for Health, Happiness and Harmony(Based on the Philosophy and Teachings of Swami Vethanthiri Maharisi) Published By: Brain Trust, Aliyar - A Wing of World Community Service Centre.

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - V : Common Subject Theory		
Course Title : Extension Activities		
Course Code: EAUG61	Hours per week: --	Credits: 1
CIA : --	ESE : 100 Marks	Total : 100 Marks

Syllabus

UNIT-I: Community Development-I:

Definition - structure and composition - community based issues - need for awareness Developmental Programmes.

UNIT - II: Community Development-II:

Rural Scenario - need of the Community - need for the community service - role of youth in community building - communal harmony - literacy - Educational Recreation.

UNIT - III: Volunteer Empowerment:

Women's Emancipation - formation of Youth Clubs - Self-Help Groups - Youth and Development.

UNIT - IV: Social Analysis:

Social issues - cultural invasion - media infiltration - human rights Education/Consumer Awareness - Adolescents Reproductive - HIV/AIDS/STD - Social harmony/National integration - Blood Donation.

UNIT - V: Introduction to NSS:
Basic Concepts - profile - aims - objectives - symbol - Motto - structure - Regular activities Special Camping Programme - Adventure Programme - National Days and Celebrations.(Applicable to NSS Students)

(OR)

NCC - Origin - Organization - Ministry of Defense - Armed forces - commands - Defense establishments in Tamil Nadu Civil Defense - Aid to civil authorities - Disaster management - Leadership - Man management - Adventure activities - Social service

Reference

National Service Scheme Manual (Revised), Ministry of Human Resources Development, government of India.

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		SEMESTER - III
Course Title : MATHEMATICS - I		
Course Code: 05AT01	Hours per week: 6	Credits: 4
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in application of mathematics in differentiation and integration.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O}$ 1	understand the expression of trigonometric functions and its hyperbolic functions.	$\mathrm{K}_{1,} \mathrm{~K}_{2}$
$\mathbf{C O ~ 2}$	acquire knowledge in solving problems in differential equations up to second order.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 3}$	acquire knowledge in solving problems in integral equations up to triple integral.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
$\mathbf{C O 4}$	understand the concepts involved in vector operators and its related problems.	K_{2}
$\mathbf{C O ~ 5}$	acquire knowledge in vector integration on basic theorems and its related problems.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$

K1-Remebering

$$
\mathbf{K}_{2} \text {-Understanding }
$$

\mathbf{K}_{3}-Applying

Syllabus		
UNIT-I	Trigonometry Expression for $\sin n \theta, \cos n \theta \& \tan n \theta-$ Expression for $\sin ^{n} \theta$ and $\cos ^{n} \theta-$ Expansion of $\operatorname{Sin} \theta, \operatorname{Cos} \theta$ and $\operatorname{Tan} \theta$ in powers of θ - Hyperbolic functions and inverse hyperbolic functions.	(18 Hrs)
UNIT-II	Differential Calculus Differentiation Methods - successive differentiation (up to second order derivative only, omit Leibritz theorem)	(18 Hrs)
UNIT- III	Integral calculus Properties of definite integrals - Reduction formula for $\int \sin ^{n} x d x, \int \cos ^{n}$ xdx and $\int \sin ^{\mathrm{m}} \mathrm{x} \cos ^{\mathrm{n}} \mathrm{xdx}$ only - Double and triple integrals (simple problems).	(18 Hrs)
UNIT- IV	Vector Differentiation Differentiation of vectors - Gradient of a vector -Directional derivative and its maximum value - Divergence and curl of a vector - solenoidal and irrotational vectors (Simple problems only).	(18 Hrs)
UNIT- V	Vector Integration Line and Surface Integrals - Green's theorem, Stoke's theorem and Gauss Divergence theorem (Statements only - without proof) - Verifications (simple problems).	(18 Hrs)

Text Books

1. Ancillary Mathematics Paper- I (MKU 2006-2007) by Dr. S. Arumugam \& Issac Publisher: New Gamma Publishing House, Palayamkottai edition 2007.
2. Ancillary Mathematics Paper- II (Revised) by Dr. S. Arumugam \& Issac Publisher: New Gamma Publishing House, Palayamkottai edition 2004.
3. Calculus by Dr. S. Arumugam \& Issac Publisher: New Gamma Publishing House, Palayamkottai edition 2011.

Unit	Text Books	Chapters
1	1	Chapter 4
2	3	Chapter 2 (2.3-2.11)
3	1	Chapter 3 (3.1-3.3, 3.5, 3.6)
4	2	Chapter 1
5	2	Chapter 2

Reference Book

Ancillary Mathematics by T.K Manikavasagam Pillay \& Others Viswanathan printers and publishers) Pvt. Ltd. Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05AT01

05AT01	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	3	3	3	3
CO2	9	-	3	3	3	3	3
CO3	9	-	3	3	3	3	3
CO4	9	-	3	3	3	3	3
CO5	9	-	3	3	3	3	3
Weightage of the course	45	-	15	15	15	15	15

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05AT01

05AT01	PSO1	PSO2	PSO3	PSO4	PSO5
CO 1	9	3	9	3	9
CO 2	9	3	9	3	9
CO 3	9	3	9	9	3
CO 4	9	9	3	9	3
CO	9	3	9	3	9
Weightage of the course contribution to POs	45	21	39	27	33
	7	2	4	5	4

Online Resources

Expansion of Trigonometry Ratio: https://youtu.be/6Rw-GMEjQ8shttps://youtu.be/giAjpfwC2LE https://youtu.be/2VMiwNcg0ek
Inverse Trigonometry Ratio: https://youtu.be/YXWKpgmLgHk
https://youtu.be/w9sjzaXEGVw
https://youtu.be/ADpxUQMCSng
Hyperbolic function: https://youtu.be/PtKQKc629v8
Differential calculus: https://youtu.be/A6Ad7VnSIZE
https://youtu.be/UwmWTxAXMk4 , https://youtu.be/n2HDbExJWBU , https://youtu.be/om8OkTVrSbU
Integral calculus: https://youtu.be/iDSc2o-wE4I
Vector Integration: https://youtu.be/K37VbB5Ukxk
Vector differentiation: https://youtu.be/FfJtVvQtqTM
Gauss divergence theorem: https://youtu.be/kox4HHL43oM
Stock's Theorem: https://youtu.be/MZnymin9i3s
Green's Theorem: https://youtu.be/6fJE3vvjB8o

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		SEMESTER - IV
Course Title : MATHEMATICS - II		
Course Code:05AT02	Hours per week: 3	Credits: 3
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in solving differential equations and its applications.

Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	understand the formation of differential equations and its different forms.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
CO 2	acquire knowledge in solving problems in differential equations of first order.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 3	acquire knowledge in solving problems in differential equations of higher order.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
CO 4	understand the concepts involved in differential equations of homogeneous forms.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$
CO 5	acquire knowledge in solving problems in simultaneous differential equations and total differential equations.	$\mathrm{K}_{2,} \mathrm{~K}_{3}$

Text Book

Differential equations and Applications by Dr.S. Arumugam \& Issac. Publisher: New Gamma Publishing House, Palayamkottai - 2011 edition.

Unit	Chapters
1	Chapter 1 $(1.1-1.2)$
2	Chapter 1 $(1.3-1.6)$
3	Chapter 2 $(2.1-2.3)$
4	Chapter 2 $(2.4-2.5)$
5	Chapter 2 $(2.6-2.7)$

Reference Book

Ancillary Mathematics by T.K Manikavasagam Pillay \& Others Viswanathan printers and publishers) Pvt Ltd. Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05AT02

05AT02	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	3	9	3	3	3
CO2	9	-	3	9	3	3	3
CO3	9	-	3	9	3	3	3
CO4	9	-	3	9	3	3	3
CO5	9	-	3	9	3	3	3
Weightage of the course	45	-	15	45	15	15	15
Weighted percentage of Course contribution to POs	3	0	2	5	2	5	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05AT02

05AT02	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	9	9	9	3	3
CO2	3	3	3	3	3
CO3	9	3	3	3	9
CO4	9	3	3	3	3
CO5	9	3	3	3	3
Weightage of the course	39	21	21	15	21
Weighted percentage of Course contribution to POs	6	2	2	3	2

Online Resources

1. https://www.youtube.com/watch?v=BxUrBQm8IC0 - Introduction of first order linear differential equations
2. https://www.youtube.com/watch? v=GSmCiYbX2xM - Exact D.E
3. https://www.youtube.com/watch?v=hNCE3AxbWj0 - Bernoulli's Equation
4. https://www.youtube.com/watch?v=UFWAu8Ptth0 - Second order LDE
5. https://www.youtube.com/watch?v=yTDx0Rzviak - Second order LDE with variable coefficients

DEPARTMENT OF MATHEMATICS

Programme: B.Sc. MATHEMATICS (Under CBCS and OBE)
(For those students admitted during the Academic Year 2018-19 and after)

PART - III : Allied Theory		SEMESTER - IV
Course Title : MATHEMATICS - III		
Course Code: 05AT03	Hours per week: 3	Credits: 3
CIA: 25 Marks	ESE: 75 Marks	Total: 100 Marks

Preamble

To enable the students to acquire the basic knowledge in partial differentiation and its applications. Course Outcomes (CO)

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
$\mathbf{C O} 1$	understand the partial differential equations and solving its first order problems.	$\mathrm{K}_{1}, \mathrm{~K}_{2}$
$\mathbf{C O ~ 2 ~}$	acquire knowledge in solving problems in different types of partial differential equations.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O ~ 3}$	acquire knowledge in Laplace transforms and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O 4}$	acquire knowledge in Inverse Laplace transforms and its applications.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$
$\mathbf{C O 5}$	acquire knowledge in Fourier series, Odd and Even functions and its related problems.	$\mathrm{K}_{2}, \mathrm{~K}_{3}$

K1-Remebering $\quad \mathbf{K}_{\mathbf{2}}$-Understanding $\quad \mathbf{K}_{\mathbf{3}}$-Applying

| Syllabus |
| :---: | :--- | :---: | :---: |
| UNIT-I Partial differential equations -formation- by elimination of arbitrary
 constants and arbitrary functions - first order partial differential
 equations - classification of integrals - solving first order p.d.e in
 Lagrange's form. (9 Hrs)
 UNIT-II Solving p.d.e of some standard forms - Type I: $f(p, q)=0-$
 Type II: $z=p x+q y+f(p, q)-$ Type III: $f(z, p, q)=0-$
 Type IV: $f_{1}(x, p)=f_{2}(y, q)$. (9 Hrs)
 UNIT- III Laplace Transform: definition - Laplace transforms of
 $x^{n}, e^{a x}, \cos a x, \sin a x, \cosh a x \sinh a x$ finding Laplace transforms of
 $f^{\prime}(x), f(a x), x f(x)$ and $\frac{f(x)}{x}$ (9 Hrs)
 UNIT- IV Inverse Laplace Transforms - solution of differential equations using
 Laplace Transform- linear equations with constant coefficients and
 variable coefficients - simultaneous equations. (9 Hrs)
 UNIT- V Fourier series - Fourier series for odd and even functions - half range
 Fourier cosine and sine series - Fourier series in a general interval. (9 Hrs) |

Text Books

1. Differential Equations and applications by Dr.S. Arumugam \& Issac Publisher: New Gamma Publishing House, Palayamkottai (Reprint 2011).
2. Ancillary Mathematics (Paper III-MKU) by Dr.S. Arumugam \& Issac. Publisher: New Gamma Publishing House, Palayamkottai (2004 Edition).

Unit	Text Books	Chapters
1		Chapter 4 (Section: 4.1-4.3)
2	1	Chapter 4 (Section: 4.4)
		Chapter 3 (Section: 3.1)
		Chapter 3 (Section: 3.2)
5	2	Chapter 9

Reference Book

Ancillary Mathematics by T.K Manikavasagam Pillay \& Others Viswanathan printers and publishers) Pvt. Ltd. Chennai.

Mapping of CO with PO

CO - PO Mapping for Course Code: 05AT03

05AT03	PO1	PO2	PO3	PO4	PO5	PO6	PO7
CO1	9	-	-	-	-	-	3
CO2	9	-	-	-	-	-	3
CO3	9	-	-	-	-	-	3
CO4	9	-	-	-	-	-	3
CO5	9	-	-	-	-	-	3
Weightage of the course	45	-	-	-	-	-	15
Weighted percentage of Course contribution to POs	3	0	0	0	0	0	2

Mapping of CO with PSO

CO - PSO Mapping for Course Code: 05AT03

05AT03	PSO1	PSO2	PSO3	PSO4	PSO5
CO1	3	9	9	3	3
CO2	3	9	9	3	3
CO3	3	9	9	3	3
CO4	3	9	9	3	3
CO5	3	9	9	3	3
Weightage of the course Weighted percentage of Course contribution to POs	15	45	45	15	15

Online Resources

PDE: https://youtu.be/u4yBWpmB6z4 https://youtu.be/OCLw11a0LTM
Lagrange's form: https://youtu.be/41U-i1Q7se0 https://youtu.be/QLLOI382tZw
Types of PDE: https://youtu.be/ongICvz1BsQ https://youtu.be/vSdrKPNIIRE
Laplace Transform: https://youtu.be/luJM137-nso https://youtu.be/EDVJotmT584
Inverse Laplace transform: https://youtu.be/_P519nGupO8 https://youtu.be/HuHgbEuUBSo
Fourier Transform: https://youtu.be/-E_WkcdszKU https://youtu.be/GtXmS5YH7XM
https://youtu.be/lkAvgVUvYvY

