

Vision & Mission and PEOs, PSOs & POs

DEPARTMENT OF MATHEMATICS

Choice Based Credit System (CBCS) and Learning Outcomesbased Curriculum Framework (LOCF)

DEPARTMENT OF MATHEMATICS

Vision:

To raise a battalion of Maths graduates equipped with logical thinking and tender heart to serve our motherland as potential leaders in the manifold of national effort.

Mission:

Enriching the mental, emotional and intellectual facets of maths students to cope up with any career that they choose and to strive to attain perfection in life.

Program Outcomes:
The Objective of this Programme is to

P.No.	Programme Outcome	Description
PO1	Disciplinary Knowledge and	Take informed actions after identifying the assumptions that
	Critical Thinking	frame our thinking and actions, checking out degree to
		which these assumptions are accurate and valid, and looking
		at our ideas and decisions (intellectual, organizational, and
		personal) from perspectives.
PO2	Effective Communication and	Speak, read, write and listen clearly in person and through
	Digital Literacy	electronic media in English and in one Indian language, and
		make meaning of the world by connecting people, ideas,
		books, media and technology.
PO3	Social Interaction and Problem	Elicit views of others, mediate disagreements and help reach
	Solving	conclusions in group settings.
PO4	Effective Citizenship and Social	Demonstrate empathetic social concern and equity centred
	Responsibility	national development, and the ability to act with an
		informed awareness of issues and participate in civic life
		through volunteering and life training.
PO5	Professional Ethics and Human	Recognize different value systems including your own,
	Values	understand the moral dimensions of your decisions, and
		accept responsibility for them.
PO6	Environment and Sustainability	Understand the issues of environmental contexts and
		Sustainable development.
PO7	Self –directed and life – long	Acquire the ability to engage in independent and life – long
	learning	learning in the broadest context socio- technological
		changes

Course Outcomes (Cos) PART – III : Course Theory Course Code: 05CT11 Course Title: ALGEBRA AND TRIGONOMETRY

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Define the basic concepts and get the knowledge about irrational and imaginary roots and transformations of equations.	K1
CO 2	Understand the basic concepts of reciprocal equations	K_2
CO 3	find the approximate roots using Horner's method	K ₂ , K ₃
CO 4	To derive the expansions of $\sin\theta$, $\cos\theta$, $\tan\theta$, $\sin n\theta$, $\cos n\theta$, $\tan n\theta$, $\sin^n\theta$, $\cos^n\theta$.	K ₂ ,K ₃
CO 5	To understand the concept of the logarithm of complex numbers and to find the sum of trigonometric series using C+iS method summation of series.	\mathbf{K}_3
K1 - F	Remembering $K2$ – Understanding $K3$ – Apply	ing

PART – III : Course Theory	Course Code: 05CT12
Course Title: DIFFERENTIAL CALCULUS	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Define basic concepts and definitions of differentiation and explain the method of differentiation	$K_{1,}K_{2}$
CO 2	To get knowledgeof successive differentiation and Leibnitz theorem.	K ₂ , K ₃
CO 3	Understand the concept of subtangent and subnormal which are important in physics and also the concept of envelope, a curve that is tangential to each one of a family of curves in a plane.	K ₂ , K ₃
CO 4	To get the knowledge of radius of curvature ,which shows how a curve is almost part of a circle in a local region	K_2
CO 5	Understand the concept of partial derivatives which are used in vector calculus and differential geometry.	K ₁ , K ₂ , K ₃
K1- F	Remembering $\mathbf{K2}$ – Understanding $\mathbf{K3}$ – Apply	ing

PART – III : Course Theory	Course Code: 05CT21
Course Title: INTEGRAL CALCULUS	S

Upon successful completion of this course, the students will:

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Recall different formulae to find the integration of algebraic, rational, trigonometrical, exponential and logarithmic functions	Kı
CO 2	Recognize the integration as the reverse process of differentiation	\mathbf{K}_2
CO 3	Compute the definite and indefinite integrals by using the techniques of integration	K ₂ , K ₃
CO 4	Use the knowledge of multiple integrals for finding the volume and area	K ₂ ,K ₃
CO 5	Use integration to solve real world problems.	K ₃
K	1 - Remembering $\mathbf{K2}$ – Understanding $\mathbf{K3}$ – A	pplying

PART – III : Course Theory	Course Code: 05CT22
Course Title: ANALYTICAL GEOMETRY (3D) AND VE	CCTOR CALCULUS

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Define basic concepts of coordinate system and planes. Equation of a straight line. Equation of a sphere. Basic concepts of vector differentiation and vector integration	$K_{1,}K_{2}$
CO 2	Know about the relation between the direction ratios and direction cosines of a line, different forms of the equation of a plane, equation of a straight line and equation of a sphere.	K _{2,} K ₃
CO 3	Find the angle between two planes, angle between a line and a plane, shortest distance between two lines and circle of intersection of two spheres.	K ₂ , K ₃
CO 4	Know about divergence and curl of a vector, solenoidal and irrotational vectors, Laplacian operator.	K ₂
CO 5	Get the knowledge of Green's theorem, Stoke's theorem and Gauss divergence theorem and application these theorems.	K ₂ , K ₃

PART – III : Allied Theory	Course Code: 05AT01
Course Title: ANCILLARY MATHEMATI	CS – I

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the expression of trigonometric functions and its hyperbolic functions.	K ₁ , K ₂
CO 2	Acquire knowledge in solving problems in differential equations up to second order.	K ₂ , K ₃
CO 3	Acquire knowledge in solving problems in integral equations up to triple integral.	K ₂ , K ₃
CO 4	D4 Understand the concepts involved in vector operators and its related problems.	
CO 5	Acquire knowledge in vector integration on basic theorems and its related problems.	K ₂ , K ₃
K1 - R	Remembering K2 – Understanding K3 – Apply	ing

PART – III : Course Theory	Course Code: 05AT02
Course Title: ANCILLARY MATHEMATI	CS – II

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the formation of differential equations and its different forms.	K_1, K_2
CO 2	Acquire knowledge in solving problems in differential equations of first order.	K ₂ , K ₃
CO 3	Acquire knowledge in solving problems in differential equations of higher order.	K ₂ , K ₃
CO 4	Understand the concepts involved in differential equations of homogeneous forms.	K ₂ , K ₃
CO 5	Acquire knowledge in solving problems in simultaneous differential equations and total differential equations.	K ₂ , K ₃

PART – III : Allied Theory Course Code: 05AT03 Course Title: ANCILLARY MATHEMATICS – III

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the partial differential equations and solving its first order problems.	K_1, K_2
CO 2	Acquire knowledge in solving problems in different types of partial differential equations.	K ₂ , K ₃
CO 3	Acquire knowledge in Laplace transforms and its applications.	K ₂ , K ₃
CO 4	Acquire knowledge in Inverse Laplace transforms and its applications.	K ₂ , K ₃
CO 5	Acquire knowledge in Fourier series, Odd and Even functions and its related problems.	K ₂ , K ₃

K1- RememberingK2 - UnderstandingK3 - Applying

PART – III : Course Theory	Course Code: 05CT51
Course Title: STATISTICS	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Define the basic concepts of correlation and regression line. And also study the basic theorems.	K ₁ ,K ₂
CO 2	Understand the concept of Probability, random variables and Boole's inequality.	K ₂
CO 3	Understand the concepts in Some special distributions and its applications.	K ₂ , K ₃
CO 4	Illustrate sampling and Testing of Hypothesis & apply the t-test, f-test.	K ₂ , K ₃
CO 5	Apply Chi-square test for population variance and goodness of fit.	K ₂ , K ₃

K1- Remembering K2 – Un

K2 – Understanding **K3** – Applying

PART – III : Course Theory	Course Code: 05CT52
Course Title: MODERN ALGEBRA	

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the Relations and Mappings	K1
CO 2	Understand the groups and its properties	K ₂
CO 3	Apply the group properties in Order of an element	K ₂ , K ₃
CO 4	Understand the Isomorphism and apply in its theorems	\mathbf{K}_2
CO 5	Apply the group properties in Rings and its elementary properties.	K ₂ , K ₃
]	K1 - Remembering $\mathbf{K2}$ – Understanding $\mathbf{K3}$ – A	pplying

PART – III : Course Theory	Course Code: 05CT53
Course Title: REAL ANALYSIS	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the concepts of sets and its properties of elements.	K_1
CO 2	Obtain the concepts of Open & Closed sets and its properties.	K ₂
CO 3	Develop the concepts about the metric on sets, spaces and functions.	K ₂ , K ₃
CO 4	Examine the concepts of metric on connected spaces and its applications.	K_{2}, K_{3}
CO 5	Evaluate the concepts on compact metric spaces and its applications.	K ₂ , K ₃

PART – III : Course Theory	Course Code: 05CT54
Course Title: STATICS	

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Remember the parallelogram law, triangle law, Lami's theorem and resolved parts.	K ₁ , K ₂
CO 2	Explain the concept of like and unlike parallel forces, condition of equilibrium, Varigon's theorem and couples.	K ₁ , K ₂
CO 3	Interpret the concept of system of coplanar forces and equation to the line of action of the resultant and apply it to various problems.	K ₂ , K ₃
CO 4	Illustrate the concept of Friction, laws of friction and equilibrium of a body and rough inclined plane and apply these concept problems	K ₂ , K ₃
CO 5	Understand the concept of equilibrium of strings, equation of common catenary and geometrical properties of catenary apply it to various problems.	K ₂ , K ₃

K1- Remembering K2 – Understanding K3 – Applying

PART – III : Course Theory	Course Code: 05EP5A
Course Title: LINEAR PROGRAMMIN	IG

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Gain basic concept ideas of LPP and forming mathematical model and solving LPP by graphically.	K1, K3
CO 2	Obtain the optimal solution for more than two variables in LPP by using simplex method.	K2
CO 3	Apply dual problem method to reduce the complexity of solving LPP.	K2
CO 4	Learning various method to solve transportation problem and find feasible and optimal solution.	К3
CO 5	Acquire fundamental knowledge and to find the optimal solution for assignment problem and game theory.	К3

K1- Remembering

K2 – Understanding

K3 – Applying

PART – III : Course Theory	Course Code: 05EP5B
Course Title: COMBINATORICS	

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Relate and apply sum and product rules.	K1, K3
CO 2	Analyze and solve problems related to Permutation and Combination.	К3
CO 3	Make use of Inclusion-Exclusion Principle to solve problems on generalized permutation and combination	К3
CO 4	Demonstrate ordinary and exponential generating functions	K2
CO 5	Solve Problems using Recurrence Relations.	K3
K1-	Remembering K2 – Understanding K3 – Apply	ving

PART – III : Course Theory	Course Code: 05CT61
Course Title: LINEAR ALGEBRA	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the basics concept in vector space and linear transformation.	K ₁ ,K ₂
CO 2	Define inner product space & develop the concepts of vector inner product spaces in orthogonal and orthogonal complement.	$K_{1,}K_{3}$
CO 3	Explain the theory of matrices and different types and also apply to solve the inverse of a matrix and rank of a matrix.	K ₂ , K ₃
CO 4	Define simultaneous linear equation and apply to it in eigen values & eigen vectors.	K ₂ , K ₃
CO 5	Illustrate the matrix of a linear transformation and apply the bilinear forms and quadratic forms.	K ₂ , K ₃

PART – III : Course Theory	Course Code: 05CT62
Course Title: COMPLEX ANALYSIS	

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Understand the basics in transformations or mappings on complex field among two different fields.	K_1
CO 2	Obtain the Cauchy Riemann equations on analytic functions and its applications for some standard theorems.	K_2
CO 3	Develop the concepts in Cauchy theorems in complex integrations and its applications.	K ₂ , K ₃
CO 4	Analysis the series expansions of different types and the concepts of singularities with its applications.	K ₂ , K ₃
CO 5	Evaluate the concepts of residues on analytic functions and the development of contour theorems using residues.	K ₂ , K ₃
K	1 - Remembering $\mathbf{K2}$ – Understanding $\mathbf{K3}$ – A	pplying

PART – III : Course Theory	Course Code: 05EP61A
Course Title: GRAPH THEORY	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Remember the basic definitions like Graphs, Sub graphs, Degree of a vertex, Covering and Independent sets	K1, K2
CO 2	Facts and idea by the Degree sequence, Graphic sequence, connectedness of a graph.	K1, K2
CO 3	Giving description to the concept of Eulerian and Hamiltonian graphs and apply it to find whether the given graph is Eulerian or Hamiltonian.	K ₂ , K ₃
CO 4	Understand the concept of Matching apply it to prove the theorem like Halls marriage theorem.	K ₂ , K ₃
CO 5	Classify the concept of Colourability and chromatic number and apply it to solve problems like Four Colour Problem.	K ₂ , K ₃

PART – III : Course Theory	Course Code: 05EP6B
Course Title: CRYPTOGRAPHY	

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Recall the fundamentals of cryptography	K1
CO 2	Demonstrate standard cryptographic algorithms used to analyze confidentiality, integrity and authenticity.	K2,K3
CO 3	List and Identify the security issues in the network, key distribution and management schemes.	K1, K3
CO 4	Design encryption techniques to secure data in transit networks.	K3
CO 5	Evaluate security mechanisms in theory of networks	К3
	an anharing V2 Understanding V2 Analy	

K1- Remembering **K2** – Understanding **K3** – Applying

Course Title: OPERATION RESEARCH	PART – III : Course Theory	Course Code:	05EP62
Course Thie. Of EXATION RESEARCH	Course Title: OPERATION RESEAR	CH	

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Remembering fundamental concepts of stock and its types and get more ideas about solving deterministic and probabilistic inventory model.	K1
CO 2	Understanding the different types queuing systems and its classifications.	K_1 , K_2
CO 3	Construct the network diagram and applying network models in diverse simple real life problems.	K_2, K_3
CO 4	Apply Sequencing techniques for processing of jobs by machines in systematics manner.	K ₃
CO 5	Use the replacement policy methods, to estimate the replacement time when the value of money does not change with time and changes with time.	K 3
	K1- Remembering K2 – Understanding K3 – Appl	ying

PART – III : Course TheoryCourse Code: 05EP6DCourse Title: FUZZY SETS

On the successful completion of the course, students will be able to

No.	Course Outcome	Knowledge Level (according to Bloom's Taxonomy)
CO 1	Explain the concept of fuzzy sets and crisp sets in brief	K2, K3
CO 2	Define operations and relations in fuzzy sets	K1
CO 3	Demonstrate the operations on fuzzy sets	K2
CO 4	Analyze the relationship among fuzzy measures	K3
CO 5	Apply fuzzy theory in Engineering, Management and Medicine	K3
K1 - Remembering K2 – Understanding K3 – Applying		