| VIVERAN                                                 |                                       | MENT OF CHEMISTRY                                   |                                 |
|---------------------------------------------------------|---------------------------------------|-----------------------------------------------------|---------------------------------|
| Course Code: 33CT11                                     | Programme:                            |                                                     | CIA: II Test                    |
| <b>Date:</b> 10.10.2019                                 | Major:                                | CHEMISTRY                                           | Semester: I                     |
| Time: 2Hrs                                              | Year:                                 | I                                                   | <b>Maximum:</b> 50 Marks        |
| Course Title:                                           |                                       | ORGANIC CHE                                         | MISTRY-I                        |
|                                                         | ,                                     | SECTION – A                                         |                                 |
| <b>Answer ALL questions</b>                             |                                       |                                                     | $(5 \times 1 = 5)$              |
| 1. RCOO +BrCN* RC                                       | N*                                    |                                                     | (CO1)                           |
| The reaction follows                                    |                                       | 1) 1                                                |                                 |
| a) Isotopic labeling                                    | 12.4.                                 | b) detection of interme                             |                                 |
| c) Isolation of an inte                                 |                                       | d) Trapping of interme                              |                                 |
| 2. A nitrene can be trapped b<br>a)CO b)CO <sub>2</sub> | •                                     | $SO_2$ d) $SO_3$                                    | (CO2)                           |
| 3. Choose the wrong stateme                             | · · · · · · · · · · · · · · · · · · · | _ ,                                                 | (CO3)                           |
| _                                                       |                                       | b) azulene is non-alterr                            | ` ,                             |
| -                                                       | •                                     |                                                     | inti-bonding orbitals are equal |
| and opposite                                            | y droedrooms, the e                   | nergies of the bonding und a                        | and conding oronais are equal   |
| d) syndnones are aror                                   | natic in nature                       |                                                     |                                 |
| 4. Which of the following co                            |                                       | diastereotopic protons?                             | (CO4)                           |
| a) ethyl chloride                                       | -                                     | hloropropane                                        | ,                               |
| c) 2-methylpropene                                      | d) 1,2-dic                            | hloroethane                                         |                                 |
| 5. How many sugar residues                              | are present in α –c                   | cyclodextrin                                        | (CO5)                           |
| a) 4 (b)8                                               | (c)6                                  | d) 7                                                |                                 |
|                                                         |                                       |                                                     |                                 |
|                                                         |                                       | SECTION – B                                         |                                 |
| <b>Answer any FIVE question</b>                         | S                                     | 520231, 2                                           | $(5 \times 2 = 10)$             |
| 6. Define filed effect?                                 |                                       |                                                     | (CO1)                           |
| 7. Give any two application of                          | of inductive effect                   |                                                     | (CO1)                           |
| 8. What are triplet carbenes                            |                                       |                                                     | (CO2)                           |
| 9. Discuss the aromaticity of                           | -                                     |                                                     | (CO3)                           |
| 10. Write the IUPAC name for                            | or following comp                     | oounds.                                             | (CO3)                           |
|                                                         | $\wedge$                              |                                                     |                                 |
|                                                         | 17                                    |                                                     |                                 |
| 11.Define enantiomeric exce                             | 00                                    |                                                     | (CO4)                           |
| 12. What in meant by Mutaro                             |                                       |                                                     | (CO <sub>5</sub> )              |
| 12. What in meant by Widtaro                            |                                       | SECTION – C                                         | (003)                           |
| Answer any THREE questi                                 |                                       | 22011011                                            | $(3 \times 5 = 15)$             |
| 13. Write short notes on types                          |                                       | vith example?                                       | (CO2)                           |
| 14.List out the kinetic and no                          |                                       | *                                                   | , , , ,                         |
| 15.Discuss the chemistry of a                           |                                       |                                                     | (CO3)                           |
| 16.Discuss asymmetric synth                             |                                       | uxiliary.                                           | (CO4)                           |
| 17.Explain in detail about the                          | e furanose structure                  | e of Glucose                                        | (CO5)                           |
|                                                         |                                       | SECTION – D                                         |                                 |
| Answer any TWO question                                 |                                       | SECTION - D                                         | $(2 \times 10 = 20)$            |
| 18. Explain in detail about re                          |                                       | plications?                                         | (CO1)                           |
| 19. (i) Interpret the optical ac                        | -                                     | <del>-</del>                                        | (CO4)                           |
|                                                         |                                       | ve reactions with suitable ex                       |                                 |
| 20. Elucidate the skeletal stru                         |                                       |                                                     | (CO5)                           |
|                                                         |                                       | and the standards of the standards of the standards | ()                              |

\*\*\*\*\*

| DEPARTMENT OF CHEMISTRY             |            |           |                          |  |
|-------------------------------------|------------|-----------|--------------------------|--|
| Course Code: 33CT12                 | Programme: | M.Sc.,    | CIA: II Test             |  |
| <b>Date:</b> 11.10.2019             | Major:     | CHEMISTRY | Semester: I              |  |
| Time: 2Hrs                          | Year:      | I         | <b>Maximum:</b> 50 Marks |  |
| Course Title: INORGANIC CHEMISTRY-I |            |           |                          |  |

| Cour  | se Title:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | INORGANIC CHEMISTRY-I                   | Ī        |
|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------|
|       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SECTION – A                             |          |
| Answe | er ALL questions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (5 x                                    | x 1 = 5) |
| 1.    | The factors favoring the formation of i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | onic bond are                           | (CO1)    |
|       | (a) High ionization energy and high ele                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ectron affinity                         |          |
|       | (b) low ionization energy and low elec-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | etron affinity                          |          |
|       | (c) high ionization energy and low elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | etron affinity                          |          |
|       | (d) low ionization energy and high elec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ctron affinity                          |          |
| 2.    | Which statement is incorrect about a contract a contract about a contract a contra | cubic close-packed lattice?             | (CO1)    |
|       | (a) All atoms have a coordination num                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ber of 12                               |          |
|       | (b) The lattice contains both tetrahedra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | al and octahedral holes                 |          |
|       | (c) Layers of close-packed atoms are s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | tacked in an ABABAB pattern             |          |
|       | (d) The packing is more efficient than                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in a body-centered cubic lattice        |          |
| 3.    | Anti-bonding molecular orbitals are pr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | roduced by                              | (CO2)    |
|       | (a) Constructive interaction of atomic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | orbitals                                |          |
|       | (b) Destructive interaction of atomic o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rbitals                                 |          |
|       | (c) The overlap of the atomic orbitals of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | of two negative ions                    |          |
|       | (d) All of these                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |          |
| 4.    | According to valence bond theory, a be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ond between two atoms is formed when    | (CO2)    |
|       | a) Half-filled atomic orbitals overlap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | b) Fully filled atomic orbitals overlap |          |
|       | c) Non-bonding atomic orbitals overla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | p d) Electrons of the two atoms overlap |          |
| 5.    | MoO <sub>6</sub> and WO <sub>6</sub> groups are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | (CO4)    |
|       | (a) Hetropolyacids (b) Isopolyacids                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | s (c) polyacids (d) acids               |          |

## SECTION - B

| Answer any FIVE questions                                                      | $(5 \times 2 = 10)$ |
|--------------------------------------------------------------------------------|---------------------|
| 6. Write down the factors that affect the lattice energy                       | (CO1)               |
| 7. What is Slater rule and mention the uses with example                       | (CO1)               |
| 8. Derive Pauling's equation to calculate the ionic radius of a compound       | (CO1)               |
| 9. Illustrate any three limitations of VB theory                               | (CO2)               |
| 10. What is meant by Bent's rule?                                              | (CO2)               |
| 11. Comment on the relationship between bond order, bond length and bond stre  | ength (CO2)         |
| 12. Give an alternative name for each of the following groups of silicates     | (CO4)               |
| (a) Nesosilicates (b) Double island silicates (c) Cyclo-silicat                | es and              |
| (d) Sheet silicates.                                                           |                     |
| SECTION – C                                                                    |                     |
| Answer any THREE questions                                                     | $(3 \times 5 = 15)$ |
| 13. Account on Fajan's rule and its applications                               | (CO1)               |
| 14. Write a note on relation between radius ratio                              | (CO1)               |
| 15. List out the postulates and limitations of VSEPR theory                    | (CO2)               |
| 16. Draw the MO diagram of N <sub>2</sub> and CO molecules                     | (CO2)               |
| 17. Write a note on preparation and properties of $S_4N_4$                     | (CO4)               |
| SECTION – D                                                                    |                     |
| Answer any TWO questions                                                       | (2 x 10= 20)        |
| 18. What is lattice energy? How will you obtain lattice energy from            |                     |
| (a) Born-Habercycle (b) Born-Lande equation                                    | (CO1)               |
| 19. What are carbides? Discuss any two types of carbides in detail             | (CO4)               |
| 20. i) Identify the hybridization and geometry of the following molecules. (3) | (CO2)               |
| a) $PF_5$ b) $ClF_3$ c) $SO_4^{2-}$                                            |                     |
| ii) Draw the Lewis dot structure for the following molecules. (3)              |                     |
| a) SF <sub>6</sub> b) XeF <sub>4</sub> c) XeO <sub>2</sub> F <sub>2</sub>      |                     |
| iii) Explain inter and intramolecular hydrogen bonding with examples. (4)      |                     |
| *******                                                                        |                     |

| VIVEKANA                                                                     |                                          | E, TIRUVEDAKAM V                  |                                                                                      |         |
|------------------------------------------------------------------------------|------------------------------------------|-----------------------------------|--------------------------------------------------------------------------------------|---------|
| Course Code: 33CT13                                                          | Programme:                               | ENT OF CHEMISTE<br>M.Sc.,         | CIA: II Test                                                                         |         |
| <b>Date:</b> 12.10.2019                                                      | Major:                                   | CHEMISTRY                         | Semester: I                                                                          |         |
| Time: 2Hrs                                                                   | Year:                                    | I                                 | Maximum: 5                                                                           | 0 Marks |
| Course Title:                                                                |                                          | PHYSICAL CH                       | EMISTRY-I                                                                            |         |
|                                                                              | <u>SI</u>                                | ECTION – A                        | ( <b>-</b>                                                                           |         |
| <b>Answer ALL questions</b>                                                  |                                          |                                   | $(5 \times 1 = 5)$                                                                   |         |
| 1. Sin x is an Eigen function (a) A b)                                       |                                          | c) $d2/dx^2$ d) Co                | o.                                                                                   | (CO 1)  |
| 2. The energy of a 3-D box is                                                |                                          |                                   | 5                                                                                    | (CO 2)  |
| a) 1 b) 2                                                                    | c) 3                                     | d)                                | 4                                                                                    | (60.4)  |
| 3. Which one is not Gibb's Department a) n i d $\mu$ i = 0 b) $\Sigma$ n i d | uhem equation?<br> μ i = 0       c) dG = | =uidni d)∑                        | $\mathbf{E}\mathbf{x} \; \mathbf{i} \; \mathbf{d}\boldsymbol{\mu} \; \mathbf{i} = 0$ | (CO 3)  |
| 4. In Langmuir adsorption iso                                                |                                          |                                   | •                                                                                    | (CO 4)  |
| a) One b) Zero                                                               | c) Two                                   | , L                               | A] -1                                                                                | (CO.5)  |
| 5. The total pressure of a mixing gases present                              | ture of gases is equa                    | ii to the sum of the parti        | ai pressures of all the                                                              | (CO 5)  |
| a) Graham's law b) Avoga                                                     | /                                        | on's law d) none of<br>ECTION – B | these                                                                                |         |
| Answer any FIVE questions                                                    | 5                                        |                                   | $(5 \times 2 = 1)$                                                                   | 10)     |
| 6. State the photoelectric effection                                         | ct.                                      |                                   |                                                                                      | (CO 1)  |
| 7. What do you mean by tunn                                                  | eling effect?                            |                                   |                                                                                      | (CO 2)  |
| 8. Define Zeropoint energy.                                                  |                                          |                                   |                                                                                      | (CO 2)  |
| 9. Write the formula of three                                                | different velocities                     | and how are they related          | to each other?                                                                       | (CO 5)  |
| 10. What is Steady state appro                                               | oximation and its us                     | ses?                              |                                                                                      | (CO 4)  |
| 11. Define kinetic isotopic eff                                              | fect.                                    |                                   |                                                                                      | (CO 4)  |
| 12. What do you mean by nor                                                  | n-equilibrium therm                      | odynamics?                        |                                                                                      | (CO 3)  |
|                                                                              | <u>SI</u>                                | ECTION – C                        |                                                                                      |         |
| Answer any THREE question                                                    | ons                                      |                                   | (3 x                                                                                 | 5 = 15) |
| 13. Derive the expression for                                                | Hermitian operator                       | •                                 |                                                                                      | (CO 1)  |
| 14. Derive an expression for t                                               | he energy of a rigid                     | rotator using the Schro           | dinger wave equation.                                                                | (CO 2)  |
| 15. Briefly explain Equipartit                                               | tion principle.                          |                                   |                                                                                      | (CO 5)  |
| 16. Write a note on RRKM ar                                                  | nd slater treatment.                     |                                   |                                                                                      | (CO 4)  |
| 17. How can you determine e                                                  | xperimentally the ac                     | ctivity and activity coeff        | icients?                                                                             | (CO 3)  |
|                                                                              |                                          | SECTION – D                       |                                                                                      |         |
| Answer any TWO questions                                                     | 5                                        |                                   | (2x                                                                                  | 10 = 20 |
| 18. a) Apply that for a particle                                             | e in a 1-D box.                          |                                   |                                                                                      | (CO 2)  |
| b) Set up the SWE for SH                                                     | O and solve it for the                   | ne energy eigen values.           |                                                                                      |         |
| 19. Elaborate the theory of lic                                              | quid crystals with ap                    | oplications.                      |                                                                                      | (CO 5)  |
| 20 (-) Di (1- I i- 1                                                         | theory of unimolec                       | ular reactions                    |                                                                                      | (CO 4)  |

\*\*\*\*\*

(b) Write a note on salt effect.

| DEPARTMENT OF CHEMISTRY               |            |           |                          |  |
|---------------------------------------|------------|-----------|--------------------------|--|
| Course Code: 33CT31                   | Programme: | M.Sc.,    | CIA: III Test            |  |
| <b>Date:</b> 12.10.2019               | Major:     | CHEMISTRY | Semester: III            |  |
| Time: 2Hrs                            | Year:      | II        | <b>Maximum:</b> 50 Marks |  |
| Course Title: ORGANIC CHEMISTRY - III |            |           |                          |  |

# SECTION - A **Answer ALL questions** $(5 \times 1 = 5)$ 1. Which of the following bonds would be expected to have the lowest frequency stretch? (CO1) (a) C-Cl (d) C-F (b) C-Br (c) C-I 2. The <sup>13</sup>C NMR spectrum of a compound A contains two signals and in the <sup>1</sup>H NMR spectrum there is a singlet. Which compound is consistent with these data? (CO2)(a) acetone (b) dichloromethane (c) ethanol (d) bromoethane 3. Which of the following statements is **INCORRECT** regarding mass spectrometry? (CO3)a) It gives information about fragmentation patterns b) Isotopic distribution patterns are observed in mass spectra c) It provides direct structural data d) It is a destructive technique (CO4)4. Pericyclic reactions follow .....mechanism. a) polar b) free radical c) cationic d) concerted 5. The photochemical isomerization of 4,4-diphenyl cyclohexadienone gives a ketone and phenols. This reaction is known as...... (CO5)a) Barton reaction b) Zimmerman rearrangement c) Norrish type II d) Paterno-Buchi **SECTION - B**

| Answer any FIVE questions                                                 | $(5 \times 2 = 10)$ |
|---------------------------------------------------------------------------|---------------------|
| 6. How will you identify chlorobenzene by IR and NMR data?                | (CO1)               |
| 7. Write a difference between <sup>1</sup> H-NMR and <sup>13</sup> C-NMR. | (CO2)               |
| 8. What do you mean by metastable peak?                                   | (CO3)               |
| 9. Define base peak.                                                      | (CO3)               |
| 10. Write down the selection rules for cycloadditions.                    | (CO4)               |
| 11. What are photosensitizers?                                            | (CO5)               |
| 12. Write one example for photooxidation reaction.                        | (CO5)               |
| SECTION _ C                                                               |                     |

#### SECTION - C

#### **Answer any THREE questions**

 $(3 \times 5 = 15)$ 

- 13. Rationalize the ring strain and an electronic effect varies the IR frequencies. Give an example (CO1)
- 14. Illustrate the principle and applications of NOE in determining the conformation of molecule. (CO2)

- 15. Write a note on: a) Nitrogen rule b) McLafferty rearrangement (CO3)
- 16. Verify the selection rules for  $4n\pi \& 4n+2\pi e^{-s}$  system in [1,5] Sigmatropic rearrangements under thermal and photochemical conditions. (CO4)
- 17. Write a note on: i) Di-pi methane rearrangement ii) Barton reaction (CO5)

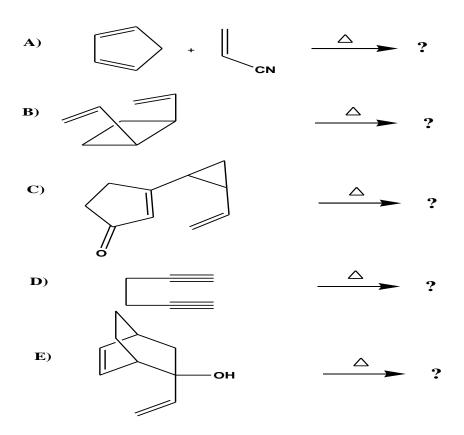
### SECTION - D

#### **Answer any TWO questions**

 $(2 \times 10 = 20)$ 

- 18. Take any two organic molecules and explain how UV, IR and NMR is useful in elucidate the structure of that molecules. (CO1)
- 19. An unknown compound exhibits the following spectra data. (CO3)

IR: 1685 cm<sup>-1</sup>


<sup>1</sup>H NMR (ppm): δ 7.84 (d, J=8 Hz, 2H), δ 7.6 (d, J=8 Hz, 2H), δ 3.65 (t, J=7 Hz, 2H), δ 3.18 (t, J=7 Hz, 2H), δ 2.25 (pentet, J=7 Hz, 2H)

<sup>13</sup>C NMR (ppm): δ 28, 36, 45, 128, 130, 133, 137, 197

EI MS (m/z): 200, 198 (1:1), 185, 183 (1:1)

Identify the structure of the compound.

20. Find out the major product in the following reactions. (CO4)



RERERE

| DEPARTMENT OF CHEMISTRY                 |            |           |                          |  |
|-----------------------------------------|------------|-----------|--------------------------|--|
| Course Code: 33CT32                     | Programme: | M.Sc.,    | CIA: III Test            |  |
| <b>Date:</b> 10.10.2019                 | Major:     | CHEMISTRY | Semester: III            |  |
| Time: 2Hrs                              | Year:      | II        | <b>Maximum:</b> 50 Marks |  |
| Course Title: INORGANIC CHEMISTRY – III |            |           |                          |  |
| SECTION – A                             |            |           |                          |  |

| SECTION – A                                                                                             |                      |
|---------------------------------------------------------------------------------------------------------|----------------------|
| Answer ALL questions (5 x                                                                               | 1 = 5)               |
| 1. The cluster having arachno structure is                                                              | (CO1)                |
| (a) $[Os_5(CO)_{16}]$ (b) $[Os_3(CO)_{12}]$ (c) $[Ir_4(CO)_{12}]$ (d) $[Rh_6(CO)_{16}]$                 |                      |
| 2. The final product in the reaction of [Cr(CO) <sub>6</sub> ] and CH <sub>3</sub> CN is                | (CO2)                |
| (a) $Cr(CO)_4(CH_3CN)_2$ (b) $Cr(CO)_3(CH_3CN)_3$                                                       |                      |
| (c) $Cr(CH_3CN)_6$ (d) $Cr(CO)_3(CH_3CN)_2$                                                             |                      |
| 3. Ionic mechanism followed in the reaction.                                                            | (CO3)                |
| (a) Oxidative addition (b) free radical substitution                                                    |                      |
| (c) free radical addition (d) migratory insertion                                                       |                      |
| 4. The sandwich complex $\eta$ -CpCoC <sub>n</sub> H <sub>n</sub> is an 18 electron species when 'n' is | (CO4)                |
| (a) 6 (b) 4 (c) 3 (d) 5                                                                                 |                      |
| 5. The catalyst used for polymerization of olefins is generated from:                                   | (CO5)                |
| (a) Ru(PPh <sub>3</sub> ) <sub>3</sub> Cl (b) TiCl <sub>4</sub> and AlEt <sub>3</sub>                   |                      |
| (c) $PdCl_2$ and $CuCl$ (d) $CO_2(CO)_9$ and $Na$                                                       |                      |
| SECTION – B                                                                                             |                      |
| Answer any FIVE questions                                                                               | $(5 \times 2 = 10)$  |
| 6. What do you mean by hapticity?                                                                       | (CO1)                |
| 7. Define 18 electron and 16 electron rule.                                                             | (CO2)                |
| 8. What is meant by half sandwich and bent sandwich?                                                    | (CO4)                |
| 9. What are difference between Fischer carbyne singlet and Schrock carbyne complex?                     | (CO4)                |
| 10. What is meant by Davies –Green-Mingos rule?                                                         | (CO4)                |
| 11. Define water gas reaction.                                                                          | (CO5)                |
| 12. Why are the basic difference between Stille coupling and Suzuki coupling reaction?                  | (CO5)                |
|                                                                                                         |                      |
| SECTION - C                                                                                             |                      |
| Answer any THREE questions                                                                              | $(3 \times 5 = 15)$  |
| 13. How are organometallic compounds classified?                                                        | (CO1)                |
| 14. Discuss the preparation and structure of sodium nitroprusside.                                      | (CO2)                |
| 15. How will you synthesis metal alkene complex? Give its properties?                                   | (CO4)                |
| 16. Draw and explain the bonding nature in metal alkyne complex.                                        | (CO4)                |
| 17. Illustrate mechanism of Miyaura Suzuki coupling reaction.                                           | (CO5)                |
| SECTION – D                                                                                             |                      |
| Answer any TWO questions                                                                                | $(2 \times 10 = 20)$ |
| 18. Interpret the concept of isolobal analogy with suitable examples.                                   | (CO1)                |

| SECTION - D                                                                               |                      |
|-------------------------------------------------------------------------------------------|----------------------|
| Answer any TWO questions                                                                  | $(2 \times 10 = 20)$ |
| 18. Interpret the concept of isolobal analogy with suitable examples.                     | (CO1)                |
| 19. Illustrate the nature bonding of metal nitrosyl complexes.                            | (CO2)                |
| 20. Explain in detail about synthesis and chemical properties of metal allyl and butadier | ne complex.(CO4)     |
| RRRRRR                                                                                    |                      |

| DEPARTMENT OF CHEMISTRY |                                       |           |                          |  |
|-------------------------|---------------------------------------|-----------|--------------------------|--|
| Course Code: 33CT33     | Programme:                            | M.Sc.,    | CIA: III Test            |  |
| <b>Date:</b> 11.10.2019 | Major:                                | CHEMISTRY | Semester: III            |  |
| Time: 2Hrs              | Year:                                 | II        | <b>Maximum:</b> 50 Marks |  |
| Course Title:           | ourse Title: PHYSICAL CHEMISTRY – III |           |                          |  |
| OT CONTACT.             |                                       |           |                          |  |

| <b>SECTION -</b> | A |
|------------------|---|
|------------------|---|

| Answer ALL the questions                                                                  | $(5 \times 1 = 5)$  |
|-------------------------------------------------------------------------------------------|---------------------|
| 1. The point group $D_{2h}$ does not contain                                              | (CO1)               |
| a) two-fold axis b) horizontal plane c) vertical plane d) S <sub>4</sub> axis             |                     |
| 2. The symmetry number is 6 for                                                           | (CO2)               |
| a) $BF_3$ b) $XeF_4$ c) $CO_2$ d) $SF_6$                                                  |                     |
| 3. Which of the following molecule shows ESR spectra?                                     | (CO4)               |
| a) $H_2O$ b) $O_2$ c) $H_2O_2$ d) $CO_2$                                                  |                     |
| 4. Mossbauer Spectroscopy involves nuclear transitions resulting from the absorption of - | rays.( <b>CO4</b> ) |
| a) alpha b) beta c) gamma d) all the above                                                |                     |
| 5. The reciprocal of viscosity is called                                                  | (CO5)               |
| a) Surface tension b) Fractional resistance c) Fluidity d) Surface area                   |                     |
| SECTION – B                                                                               |                     |

| Answer any FIVE questions                                                                                 | $(5 \times 2 = 10)$ |
|-----------------------------------------------------------------------------------------------------------|---------------------|
| 6. Verify that the characters given in the C <sub>2</sub> v point group obey the properties of the irreps | s. (CO1)            |
| 7. What do you mean by SALC                                                                               | (CO2)               |
| 8. Write the difference between IR and Raman Spectroscopy.                                                | (CO2)               |
| 9. What is the basic principle of Mossbauer spectroscopy?                                                 | (CO4)               |
| 10. Write any two applications of ESR spectroscopy.                                                       | (CO4)               |
| 11. What is significance of viscosityin the biological system?                                            | (CO5)               |
| 12. What is surface tension in alveoli?                                                                   | (CO5)               |

## SECTION - C

| Answer any THREE questions                                                           | $(3 \times 5 = 15)$ |
|--------------------------------------------------------------------------------------|---------------------|
| 13.State and explain GOT                                                             | (CO1)               |
| 14. Construction the character table for $C_2v$ .                                    | (CO1)               |
| 15. Apply group theory to solve sp <sup>3</sup> hybridization molecule with example. | (CO2)               |
| 16. Explain: a) Doppler Effect b) Mossbauer effect.                                  | (CO4)               |
| 17. Explain in brief the applications of NQR spectroscopy.                           | (CO4)               |

#### SECTION D

| <u>SECTION – D</u>                                                                          |                      |
|---------------------------------------------------------------------------------------------|----------------------|
| Answer any TWO questions                                                                    | $(2 \times 10 = 20)$ |
| 18. Explain in detail the HMO's for ethylene molecule.                                      | (CO2)                |
| 19. Establish the symmetry species of the normal modes vibration of ammonia molecule.       | (CO2)                |
| 20. Define 'g' value. What are the factors affecting it? Explain hyperfine splitting in ESR | . (CO4)              |

# RERERE

|                                 | DEPARTM               | ENT OF CHEMIST            | RY                       |
|---------------------------------|-----------------------|---------------------------|--------------------------|
| Course Code: 33EP1A             | Programme:            | M.Sc.,                    | CIA: II Test             |
| <b>Date:</b> 14.10.2019         | Major:                | CHEMISTRY                 | Semester: I              |
| Time: 2Hrs                      | Year:                 | I                         | <b>Maximum:</b> 50 Marks |
| Course Title:                   | COM                   | IPUTER APPLICATI          | ONS IN CHEMISTRY         |
|                                 | S                     | ECTION – A                |                          |
| <b>Answer ALL questions</b>     |                       |                           | $(5 \times 1 = 5)$       |
| 1. The direction of a rectang   | gular page for viewir | ng and printing is called |                          |
| a) Orientation b) Direct        | ion c) Print Layor    | ut d) Preview             | CO1                      |
| 2. DNS stands for               |                       |                           |                          |
| a) Domain Null System           | b) Disk Nan           | ne System                 |                          |
| c) Domain Number Syste          | em d) Domain N        | Name System               | CO2                      |
| 3. Which operator has the le    | owest priority?       |                           |                          |
| a) ++ b) % c) +                 | d)                    |                           | CO3                      |
| 4. In an array each value is    | called as             |                           |                          |
| a) Element b) Vari              | iable c) Dimension    | d) None of the above      | CO4                      |
| 5. The usage of Lasso tool is   | in Chemdraw is to     | •                         |                          |
| a) Select b) Rotate c) I        | Deselect d) Make a    | bond                      | CO5                      |
|                                 |                       | SECTION – B               |                          |
| Answer any FIVE questions       | S                     |                           | $(5 \times 2 = 10)$      |
| 6. Give two significance of     | Chemdraw.             |                           | CO1                      |
| 7. What is the working way      | of internet?          |                           | CO2                      |
| 8. Expand a) URLS b) PDF        |                       | CO2                       |                          |
| 9. Define array and declara     | tion                  |                           | CO3                      |
| 10. List out the different type | es of functions.      |                           | CO3                      |
| 11. What is meant by regrusi    | ion?                  |                           | CO4                      |
| 12. Define structure display.   |                       |                           | CO5                      |
|                                 | S                     | ECTION – C                |                          |
| Answer any THREE questi         |                       |                           | $(3 \times 5 = 15)$      |
| 13. What are the salient featu  | ures of windows an    | d MS word for typing tex  | kts and equations. CO1   |
| 14. Briefly explain the literat | ture survey website   | s in chemistry.           | CO2                      |
| 15. Explain the functions.      | ·                     | ·                         | CO3                      |
| 16. Discuss about the reading   | g and writing chara   | cter.                     | CO3                      |
| 17. How to NMR stimulate a      | and interpret using ( | ChemDraw software?        | CO5                      |
|                                 |                       |                           |                          |
| Answer one TWO exection         |                       | ECTION – D                | (2 v 10 = 20)            |
| Answer any TWO question         |                       | sing MS cases             | $(2 \times 10 = 20)$     |
| 18. How will you create and     |                       | •                         | CO2<br>CO3               |
| 19. Explain about the array a   |                       | •                         |                          |
| 20. (a) How to get chemical s   |                       |                           |                          |
| (b) What is difference bet      | ween chemuraw an      | 10 cnem 3D? (0 +4 mark)   | COS                      |

\*\*\*\*\*\*

| Course Code: 33NE3A     | Programme:         | M.Sc., / M.COM  | CIA: III Test            |
|-------------------------|--------------------|-----------------|--------------------------|
| <b>Date:</b> 14.10.2019 | Major:             | ZOOLOGY / M.COM | Semester: III            |
| Time: 2Hrs              | Year:              | II              | <b>Maximum:</b> 50 Marks |
| Course Title:           | FORENSIC CHEMISTRY |                 |                          |

|      | SECTION – A                                                                      |                           |
|------|----------------------------------------------------------------------------------|---------------------------|
| An   | swer ALL questions                                                               | $(5 \times 1 = 5)$        |
| Ide  | entification of explosives and examination of their operation is done by         | division of CFSL-         |
| CB   | SI?                                                                              | (CO1)                     |
|      | (a)physics (b)chemistry (c)serology (d)ballistics                                |                           |
| 1.   | Brain Mapping is also known as                                                   | (CO2)                     |
|      | (a) P3 (b) P2 (c) P1 (d) P0                                                      |                           |
| 2.   | The pattern of interaction, which is function of wavelength, is sometime called  | l a (CO3)                 |
|      | (a) Physical fingerprint (b) chemical fingerprint (c) fingerprint                | (d) FTIR                  |
| 3.   | Density is the ratio of                                                          |                           |
|      | (a) mass* volume (b) mass/volume (c) mass + volume (d) mass - vol                | ume (CO4)                 |
| 4.   | Which technique is used to document the skeletal characteristics of an unident   | ified body?               |
|      | (a) MRI (b) CT (c) Radiograph (d) X ray                                          | (CO5)                     |
|      | SECTION – B                                                                      |                           |
| An   | swer any FIVE questions                                                          | $(2 \times 5 = 10)$       |
|      | Define Forensic Pathology                                                        | (CO1)                     |
| 7. 1 | Mention the types of finger print                                                | (CO2)                     |
|      | What is the purpose of a comparative analysis?                                   | (CO3)                     |
|      | Define the term Physical match.                                                  | (CO3)                     |
|      | Define microcrystalline test.                                                    | (CO3)                     |
|      | What are the appearances of the product when iodine vapors are absorbed by f     | ingerprint residue? (CO3) |
|      | Write any three physical characteristics done in Autopsy.                        | (CO5)                     |
|      | SECTION C                                                                        |                           |
| A n  | <u>SECTION – C</u><br>swer any THREE questions                                   | $(3 \times 5 = 15)$       |
|      | Briefly explain the fingerprint division of CFSL                                 | (CO1)                     |
|      | Mention briefly about the surface characteristics and collection methods in fing | , ,                       |
|      | Discuss the following terms:                                                     | ger print. (CO2)          |
| 13.  | (a) comparative analysis (b) Classification and (c) Individualization            | (CO3)                     |
| 16   | Discuss the difference between latent, negative, and plastic fingerprints.       | (CO3)                     |
|      | Write down the important criteria followed in fire arm injuries in autopsy.      | (CO5)                     |
| 1/.  | write down the important criteria followed in the arm injuries in autopsy.       | (CO3)                     |
|      | <u>SECTION – D</u>                                                               |                           |
|      | swer any TWO questions                                                           | $(2 \times 10 = 20)$      |
| 18.  | Elaborate the functioning of the following departments in crime identification:  |                           |
|      | a) Lie detection division b) Photography division c) Scientific aids division    | (CO1)                     |
|      | Explain briefly about the critical analysis of brain mapping.                    | (CO2)                     |
| 20.  | (a) Discuss how fingerprint powder can be used to develop latent fingerprints.   |                           |
|      | (b) Briefly discuss the two types of presumptive drug tests.                     | (CO3)                     |