Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 08.01.2019

I Sessional Test II Semester Max. Marks: 50 Time: 2 Hours

ORGANIC CHEMISTRY - II (33CT21)

SECTION

$\mathbf{SECTION} - \mathbf{A}$	
Answer ALL questions	$(5 \times 1 = 5)$
1) Atropisomerism is exhibited by biphenyl compounds due to	(CO2)
a) Ring strain b) Steric strain	
c) Hindered rotation around C-C single bond d) Torsional strain	
2) The correct decreasing order of stability of cyclohexane is	(CO2)
a) Chair > Half-chair > Twist boat > Boat b) Chair > Twist boat > Boat > Half-chair	
c) Chair > Boat > Half-chair > Twist boat d) Chair > Boat > Twist boat > Half-chair	
3) Which one will dissociate fast, when it is react with water?	(CO5)
a) LiAl H_4 b) NaB H_4 c) Zn(B H_4) ₂ d) (C H_3) ₂ CuLi	
4) Which one of the substrate leads to S _N 1 reaction	(CO1)
a) methyl bromide b) ethyl bromide c) isopropyl bromide	d) neopentyl bromide
5) Pick out the product of chichibabin reaction	(CO4)
a)2-amino pyridine b) 3-amino pyridine c)2-hydroxy pyridine d) both	a and b
<u>SECTION – B</u>	
Answer any FIVE questions	$(5 \times 2 = 10)$
6) What do you mean by 1,3-diaxial interaction?	(CO2)
7) Draw the staggered and eclipsed conformation of ethane.	(CO2)
8) Draw the conformations of cis and trans-decalin.	(CO2)
9) Write any one synthetic procedure for LiAlH ₄ and mention any two properties.	(CO5)
10) What are the synthetic usages of NaBH ₄ in organic portal?	(CO5)
11) What is meant by S_N i reaction	(CO1)
12) What is Ene reaction? Given an example	(CO4)
<u>SECTION – C</u>	
Answer any THREE questions	$(3 \times 5 = 15)$
13) Demonstrate the conformational analysis of n-butane.	(CO2)
14) Illustrate Curtin-Hammett principle with an example.	(CO2)
15) Compare the reactivity of alkoxy derivatives of LiAlH ₄ with NaBH ₄ .	(CO5)
16) Illustrate the mechanism of SN1 and reaction	(CO1)
17) Compare the stobbe and Dickmann condensation	(CO4)
SECTION – D	
v i	10 = 20
18) a) Out of cis and trans-4-t-butylcyclohexane carboxylic acid, which one is a stronge	
your answer. (3)	(CO2)

10) a) Out of cis and trans-4-t-outyleyeronexame earboxyne acid, which one is a stronger acid in water	Justiny
your answer. (3)	(CO2)
b) Cis-1,3-cyclohexane dicarboxylic acid readily forms an anhydride. Why? (3)	(CO2)
c) Draw the most stable conformation of the following: (4)	(CO2)

c) Draw the most stable conformation of the following: (4)

i) cis-1-ethyl-3-methyl cyclohexane ii) trans-1-ethyl-4-t-butyl cyclohexane 19) Find out the products (A-E) (CO5)

20) Analyse the effective of substrate, nucleophile, solvent, and leaving group in $\ensuremath{S_{\text{N}}}\xspace^2$ reaction

(CO1)

I-M.Sc CHEMISTRY

Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 09.01, 2019

I Sessional Test II Semester Max. Marks: 50 Time: 2 Hours

Date: 09.01. 2019 Time: 2 Hou	ırs
INORGANIC CHEMISTRY -II (33CT22)	
SECTION – A	
Answer ALL questions $(5 \times 1 = 5)$	
1. Identify the chiral complexes from the following:	(CO1)
(A) $[Cr EDTA]$; (B) $[Ru (bipy)_3]^{3+}$; (C) $[PtCl (diene)]^{4-}$	
(a) A only (b) A and B only (c) A and C only (d) B and C only	
2. Among H ₂ O, NH ₃ , CO and F ⁻ , the ligand that stabilizes the low oxidation state of W is	(CO2)
(a) H_2O (b) NH_3 (c) CO (d) F	(22.5.3)
3. The number of microstates for d ² -electron configuration is	(CO3)
(a) 35 (b) 45 (c) 55 (d) 65	(30.4)
4. In the dissociative mechanism of octahedral complexes, the more stable intermediate formed is	(CO4)
(a) square planar (b) square pyramidal (c) prismatic (d) trigonal pyramidal	(CO.F)
5. The +3 ion of which one of the following has half filled 4f sub-shell	(CO5)
(a) La (b) Lu (c) Gd (d) Ac	
SECTION – B	
Answer any FIVE questions (5 x $2 = 10$) 6. Give example for ionization, hydrate, linkage and coordination isomerism (any one example for	(CO1)
7. The spin only magnetic moments of K_3 [Fe (ox) ₃] and K_3 [Ru (ox) ₃] are 5.91 BM and 1.73 BM	each) (COI)
respectively. Write down their ligand field electronic configurations.	(CO2)
8. Which of the following should have comparatively more intense d-d transition?	(CO3)
Ni(CO) ₄ or Fe(CO) ₅	(003)
9. Identify the ground state term symbols for d ⁵ state (Both HS and LS)	(CO3)
10. Distinguish between inert and labile complexes.	(CO4)
11. Why does separation of lanthanides is difficult?	(CO5)
12. Tell the electronic configuration for the following atoms Ce ³⁺ , Eu ³⁺ , Gd ³⁺ and Lu ³⁺ .	(CO5)
SECTION – C	, ,
Answer any THREE questions $(3 \times 5 = 15)$	
13. Provide the IUPAC name / formula / structure of the following:	(CO1)
(i) K_2 [Pd (ONO) (NCS) Cl_{21} (ii) [Co (OH) (py) ₂ (N ₂) ₂] Cl_2 (iii) [Pt (NH ₂ NH ₃) (NO) Cl_2]	
(iv) Trans-diamminetetraisothiocyanatochromate (III) (v) octa-ammine-μ-hydroxodicobalt(I	
14. The magnetic moment of [Mn(H ₂ O) ₆] (NO ₃) ₂ is approximately 6.0 BM. Find the number of unp	
electrons. Show the crystal field splitting and calculate the CFSE.	(CO2)
15. Explain the reasons of broadening of absorption bands in the electronic spectra of metal comple	xes. (CO3)
16. Define trans effect, with utility suggest for the preparation of three isomers of [Pt(N _{H3})(py)(Cl)(Br)]. (CO4)
17. Illustrate the consequences of lanthanide contraction.	(CO5)
SECTION – D	
Answer any TWO questions $(2 \times 10 = 20)$	(80.
18. (i) Discuss the molecular orbital diagram of $[Co(NH_3)_6]^{3+}$. (6 mark)	(CO2)
(ii) Assume the complex of [Ni(PPh ₃) ₂ (SCN) ₂] is paramagnetic. The analogous complex of Pd (. /
diamagnetic. Draw all the probable isomers for both the complexes considering SCN is an amb	identate
ligand. (4 mark)	
19. (i) Explain the SN1 (CB) mechanism of base hydrolysis and at very high concentration 0f OH ⁻ i	
rate is independent of [OH]. (7 mark)	(CO4)
(ii) The high spin d^4 complex ion $[Cr(H_2O)_6]^{2+}$ is labile but low spin d^4 complex ion $[Cr(CN)_6]$ in Explain (3 mark)	is mert.
Explain (3 mark) 20. (i) Explain why Ce ³⁺ and Tb ³⁺ are colourless but show strong absorption in UV region.	(CO5)
(ii) Calculate magnetic moment (μ) in BM of Pm3+ with outer configuration 4f ⁴ , 6s ²	(003)
(ii) Caroulate magnetic moment (µ) in Divi of I ins - with outer configuration 41, 05	

I M.Sc., CHEMISTRY

Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 10.01. 2019

I Sessional Test II Semester Max. Marks: 50 Time: 2 Hours

PHYSICAL CHEMISTRY - II (33CT23)

SECTION	$-\mathbf{A}$
---------	---------------

SECTION – A		
Multiple choice questions:	$(5 \times 1 = 5)$	
1. A Variation method is function	(CO1)	
(a) wave (b) trial (c) eigen (d) a & b		
2. A pair of eigenvalues of the perturbed Hamiltonian, using first order perturbation	theory, is	
(a) $3 + 2\epsilon$, $7 + 2\epsilon$ (b) $3 + 2\epsilon$, $+2 + \epsilon$ (c) 3 , $7 + 2\epsilon$ (d) 3 , $2 + 2\epsilon$	(CO1)	
3. Which of the following statements is correct about the principal moments of inert	ia of an XY	
molecule that lies on the A axis?	(CO2)	
a) $I_A = I_B$ and $I_C = 0$ b) $I_A = I_B = I_C$ c) $I_A > I_B$ and $I_B = I_C$ d) $I_A = 0$ and $I_B = I_C$, , , ,	
4. The difference between the incident and scattered frequencies in the Raman spect	rum is called the	
a) Stokes line b) Anti-Stokes line c) Raman frequency d) P-bran	ch (CO 3)	
5. A photochemical reaction takes place by the absorption of	(CO 5)	
(a) visible and UV radiations (b) IR radiations (c) heat energy (d) none of t	hese	
$\underline{\mathbf{SECTION} - \mathbf{B}}$		
Answer ANY FIVE questions	$(5 \times 2 = 10)$	
6. Why do we need to approximation method?	(CO1)	
7. Show Slater determinant wave function for Beryllium atom.	(CO1)	
8. Define Self consistent field.	(CO1)	
9. Which of the following molecules will show a pure microwave spectrum and why i) H ₂ ii) HCl iii) H ₂ O iv) CO	? (CO2)	
10. Define the following terms i) stokes Raman scattering ii) Rayleigh scattering	(CO3)	
11. Tell the selection rules for Radiationless transitions.	(CO5)	
12. Define bimolecular photophysical pathways.	(CO5)	
CECTION C		
SECTION – C	$(2 \times 5 - 15)$	
Answer any THREE questions 13. List out the Slater rules to calculate the effective nuclear charge Z	$(3 \times 5 = 15)$ (CO1)	
14. Give an account of the Hartree – Fock self consistant field method.	(CO1)	
15. Discuss the classical theory of Raman spectroscopy.	(CO3)	
16 Classify the molecules on the basis of moment of inertia	(CO2)	
17. Discuss fluorescence and phosphorescence emission	(CO5)	
177 Discuss Hubrescence and phosphorescence chassion	(000)	
<u>SECTION – D</u>		
Answer any TWO questions (2	$2 \times 10 = 20$	
18. Explain the theory and its application of variation method to helium atom	(CO1)	
19. Derive an expression for the rotational energy of a diatomic molecule taking it as	s a rigid rotator.	
Draw the rotational energy level diagram for such a molecule.	(CO2)	
20. Explain the Jablonski diagram.	(CO 5)	

II-M.Sc., CHEMISTRY

Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 10.01.2019

I Sessional Test IV Semester Max. Marks: 50 Time: 2 Hours

ORGANIC CHEMISTRY -IV (33CT41)

SECTION - A

Answer ALL questions

 $(5 \times 1 = 5)$

- 1. Which of the following would react fastest with N-bromosuccinimide?
 - (a) Benzene
- (b) Methane
- (c) Pyridine
- (d) Toluene
- 2. On treatment of benzopyrrole with pyridine-SO₃ at 50° C gives
 - (a) Indole-2-sulphonic acid
- (b) Indole-3-sulphonic acid
- (c) Indole-6-sulphonic acid
- (d) Indole-8-sulphonic acid
- 3. The total number of dissimilar symmetric carbon atoms in cholesterol are
 - (a) 6
- (b) 7
- (c) 8
- (d) 9
- 4. Any molecule which acts directly on an enzyme to lower its catalytic rate is called
 - (a) Regulator
- (b) Repressor
- (c) Inhibitor
- (d) Moderator
- 5. The number of OH groups, angular methyl groups and double respectively present in cholesterol
 - (a) 1,1 and 1
- (b) 1,2 and 2 (c) 2,1 and 1 (d) 1,2 and 1

SECTION - B

Answer any FIVE questions

 $(5 \times 2 = 10)$

- 6. Why N-alkyl substituted amides do not undergo Hoffmann rearrangement?
- 7. How aldehydes can be prepared by allylic alcohols using ene reaction?
- 8. What happens when benzofuran is treated with POCl₃ and DMF?
- 9. Write any one medicinal use of benzopyrrole.
- 10. What happens when indole is treated with strong nitrating mixture?
- 11. What are biological catalysts? Give an example.
- 12. What happen when cholesterol is distillated with Se at 160 °C?

SECTION - C

Answer any THREE questions

 $(3 \times 5 = 15)$

13. Complete the following equation; give its name and mechanism.

- 14. Write the synthesis of Vitamin A.
- 15. Give the synthesis of progesterone.
- 16. Discuss Michaelis-Menton hypothesis.
- 17. Explain the presence of angular methyl group in cholesterol.

SECTION - D

Answer any TWO questions

 $(2 \times 10 = 20)$

- 18. Explain the following reactions with mechanism: i) Baeyer-Villiger oxidation reaction
 - ii) Hofmann rearrangement.
- 19. a) Discuss the Fischer-Indole synthesis of benzopyrrole with mechanism. (6)
 - b) Write a note on Fischer's lock and key model of enzymes. (4)
- 20. Discuss the following in the structural elucidation of cholesterol.
 - (i) Position of hydroxyl group and double bond
 - (ii) nature and position of side chain.

II-M.Sc CHEMISTRY

Dept. of Chemistry

Vivekananda College

Tiruvedakam West

Date: 08.01. 2019

I Sessional Test

IV Semester

Max. Marks: 50

Time: 2 Hours

INORGANIC CHEMISTRY IV (33CT42)

SECTION - A

Answer ALL questions

 $(5 \times 1 = 5)$

- 1. The interhalogen compound not obtained is
 - (a) ICI

- (b) IF₅
- (c) BrF₅
- (d) BrCl₇

- 2. Which of the following has peroxy linkage?
 - (a) H_2SO_5
- (b) $H_2S_2O_3$
- (c) H_2SO_4
- (d) $H_2S_2O_7$

- 3. Sensor is an
- a) Analytical device
- b) Chip
- c) instrument
- d) Both A & B
- 4. What is the primary valency of Fe in potassium ferric oxalate
 - a)4

b)5

- c) 6
- d)7

- 5. Pick out light Scattering technique from the following
 - a) TGA
- b) DTA
- c) DSC
- d) Nephelometry

SECTION – B

Answer any FIVE questions

 $(2 \times 5 = 10)$

- 6. What is Adamson's rule
- 7. Define photo chemical & photophysical process
- 8. What is the principle of Raman spectroscopy
- 9. Why are interhalogens reactive?
- 10. What is mean by pseudohalogen?
- 11. Findout the structure and hybridization of peroxyborate, peroxymono and disulphuric acid.
- 12. Define the term fluorescence

SECTION - C

Answer any THREE questions

 $(3 \times 5 = 15)$

- 13. Write short notes on nephelometry and Turbidimetry
- 14. List out the photo substitution reaction of Chromium ammine complexes
- 15. Write note on Caro's acids (or) Marshall acids.
- 16. Define Interhalogens and pseudohalogen.
- 17. Write down the advantages of fluorescent based sensors (or)

SECTION - D

Answer any TWO questions

 $(2 \times 10 = 20)$

- 18. Explain indetail oxidative and reductive quenching reactions of excited tris 2,2' bipyridine ruthenium(II) complex
- 19. Discuss preparation, properties and structure of Xenon fluorides.
- 20. Explain the PET mechanism in detail.

II-M.Sc CHEMISTRY

Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 09.01, 2019 I Sessional Test IV Semester Max. Marks: 50 Time: 2 Hours

Physical Chemistry-IV (33CT43)

SECTION - A

Answer ALL questions

 $(5 \times 1 = 5)$

1. The current for electrode polarisation is

(a) $i_{c} = i_{a}$

(b) $i_c \neq i_a$

(c) $i_c = i_a = 0$

(d) $i_c = i_a = i$

- 2. Which of the following phenomena is not a factor that affects polarization at an electrode?
 - (a) Diffusion of the analyte to the electrode surface
 - (b) Diffusion of the product from the electrode surface
 - (c) The standard cell potential for the redox couple
 - (d) A significant activation barrier for the reaction
- 3. Thermodynamics properties of the system using the methods of statistical mechanics is called
 - (a) Thermodynamics
- (b) Kinetics
- (c) Quantum mechanics
- (d) Statistical thermodynamics
- 4. Which is one of the following Stirling formula
 - (a)E = O + W

(b) PV = nRT

(c) S = ln W

- (d) $\ln N I = N \ln N N$
- 5. Large molecules made up of small monomers are called
 - (a) Peptides
- (b) Polymers
- (c) Peptones
- (d) Monomers

SECTION - B

Answer any FIVE questions

 $(5 \times 2 = 10)$

- 6. Differentiate polarisable and non-polarisable electrodes
- 7. Write the mechanism of electrochemical reaction carried out in electro-catalyst
- 8. Rationalize the use of Ilkovik equation in polarography
- 9. What is the major difference between classical statics and quantum statics?
- 10. Distinguish microstate and macrostate
- 11. Define degree of polymerization
- 12. What is condensation polymerization? Give an example.

SECTION - C

Answer any THREE questions

 $(3 \times 5 = 15)$

- 13. Depict the working principle of fuel cells. Mention their merits and demerits
- 14. Discuss in detail about the different types of Ensembles
- 15. Write down the postulates of statistical thermodynamics
- 16. How is molecular weight determined by using light scattering method?
- 17. Explain the general reaction scheme for studying a polymerization reaction which proceeds by free radical mechanism.

SECTION - D

Answer any TWO questions

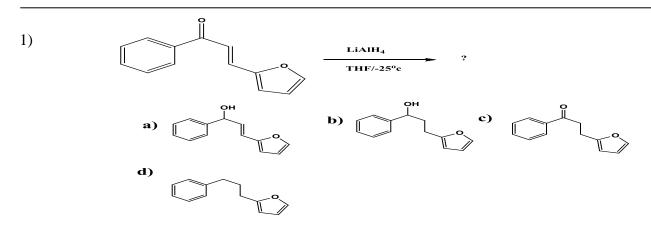
 $(2 \times 10 = 20)$

- 18. Discuss the principle, instrumentation, characterization and applications of cyclic voltammogram
- 19. Derive the Boltzmann distribution law. Mention its important draw backs.
- 20. Deduce Butler-Volmer equation. Mention their importances.

I M.Sc., CHEMISTRY

Dept. of Chemistry I Sessional Test

Vivekananda College
Tiruvedakam West
Date: 11.01. 2019
II Semester
Max. Marks: 50
Time: 2 Hours

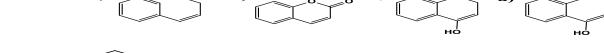

Medicinal and Pharmaceutical Chemistry (33EP2A)

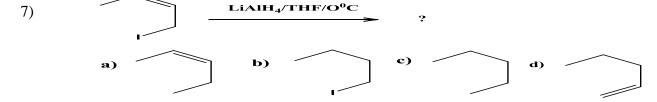
SECTION – A

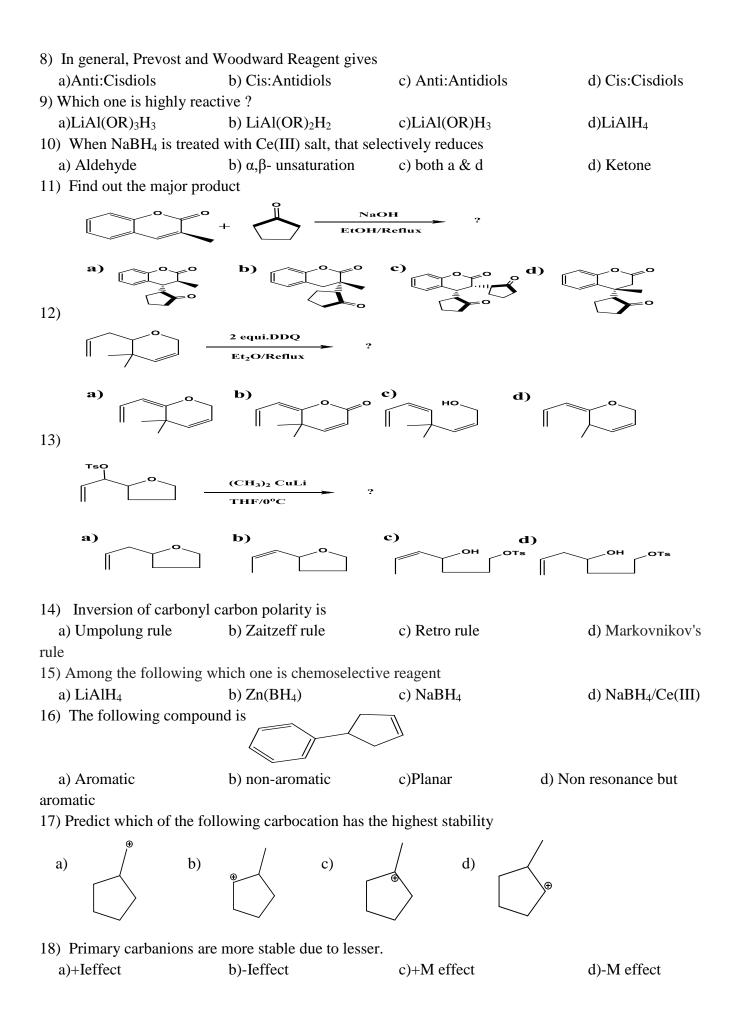
Multiple choice questions:	$(5 \times 1 = 5)$
1. The phytochemical constituent present in <i>tulsi</i>	(CO2)
a) Eugenol b) Reserpine c) Morphine d) Quinine	;
2. The anesthetic, which is used intravenously is	(CO3)
(a) Propofol (b) Halothane (c) Desflurane (d) Nitrous	s oxide.
3. Local anesthetic produce	(CO3)
(a) Analgesia, amnesia (b) Blocking pain sensation without loss of cons	ciousness.
(c) pain with an altered level of consciousness (d) a stupor or somnolent sate	
4. The most important harmone involved in the maintenance of diabetes are	(CO4)
	ncretins & amylin
5. The brand name for Vitamin D is	(CO5)
a) Paracetamol b) Calciferol c) Aspirin d) Taxol	
SECTION – B	
Answer ANY FIVE questions	$(5 \times 2 = 10)$
6. Define Pharmacokinetics.	(CO2)
7. Write down the categories of drugs?	(CO2)
8. What are analgesics? Give one example.	(CO3)
9. Draw the structure of penicillin.	(CO3)
10. Write the chemical structure of insulin.	(CO4)
11. What is the basic structure of sulphonyl ureas as hypoglycemic drugs and quote th	ie adverse
effect they produce when taken in excess.	(CO4)
12. Why do we need micronutrients and give suitable examples	(CO5)
<u>SECTION – C</u>	
Answer any THREE questions	$(3 \times 5 = 15)$
13. Discuss the various sources of drugs.	(CO2)
14. What do you mean by anaesthetics? Discuss general and local anaesthetic.	(CO3)
15. Define: (i) antipyretics and (ii) anti-inflammatory agents.	(CO3)
16. Define blood pressure and briefly explain its two types.	(CO4)
17. List out the uses of Vitamin A, B, C	(CO5)
<u>SECTION – D</u>	
Answer any TWO questions	$(2 \times 10 = 20)$
18. Explain any five detail classifications of chemotherapeutic drugs	(CO2)
19. What are antibiotics? Discuss any three antibiotics.	(CO3)
20. Describe in detail about diabetes explaining its types, causes and control measures	s. (CO4)

Dept. of Chemistry Vivekananda College Tiruvedakam West Date: 11.01. 2019 I Sessional Test Semester IV Max. Marks: 50 Time: 2 Hour

CHEMISTRY FOR NATIONAL ELIGIBILTY TEST- (33EP4B)




- 2) Which one will dissociate fast when reacted with water?
 - a) LiAlH₄
- b) NaBH₄
- c) $Zn(BH_4)_2$
- d) (CH₃)₂CuLi


- 5) Lithium diisopropyl amide is also called as
 - a) Harpoon base
- b) Non-Nucleophilic Base c) Nucleophilic base
- d) Both a & b

$$\begin{array}{c|c}
\hline
\mathbf{DDQ} \\
\hline
\mathbf{Et_2O}/-78^{\circ}\mathbf{c}
\end{array}$$
?

$$\begin{array}{c|c}
\mathbf{a} \\
\hline
\mathbf{b} \\
\hline
\end{array}$$

•	rule, select the most stable alk ne b) 3-methylcyclohexene c	kene.) 4-methylcyclohexene d) Th	ey are all of equal
stability		,	
20) Spin value for bent to	riplet carbene is		
a) 0	b)1/2	c) 1	d)3/2
21) Which of the following	ng is a hard acid?		
a) Na ⁺	b) I ⁺	c) Ag ⁺	d) Ti ⁺
22) According to Lewis,	acid is an		
a) Electron pair donor	b) Oxide donor	c) Oxide acceptor	d) Electron pair
acceptor			
23) Benzene is an example	le ofsolvent.		
a) Protic	b) Polar	c) Non-polar	d) Amphoteric
24) According to MO the	ory, a molecule or ion is stab	le if	
a) $N_b = N_a$	b) $N_a < N_b$	c) $N_b < N_a$	d) $N_a - N_b = +ve$
25) The molecule CO ₂ be	elong to the point group		
a) C_{2v}	b) C ₂	c) $D_{\alpha h}$	d) $D_{\alpha v}$
26) The selection rule of	vibrational Raman spectrosco	opy is	
a) $\Delta v = \pm 1$	b) $\Delta v = \pm 2$	c) $\Delta v = 0$	d) $\Delta v = +1$
27) Which among the following	lowing is aromatic?		
a) Cyclo-octatetratrien	yl dianion	b) Methlenecyclohexadiene	
c) Cycloheptatriene		d) Cyclopropenyl anion	
28) The reactive intermed	liate involved in the Reimer	Γiemann reaction is	
a) Carbocation	b) Carbanion	c) Free radical	d) Dichlorocarbene
29) A bromination of cis-	2-butene gives a		
a) Racemic-tetrabromi	de b) meso-2,3-Dibromobut	ane c) (\pm) -2,3-Dibromobutan	e d) Meso-
tetrabromide			
30) Addition of BH ₃ to a	carbon-carbon double bond is	s:	
a) anti-Markovnikov a	nti addition	b) anti-Markovnikov syn ad	dition
c) Markovnikov syn ac	ddition	d) Markovnikov anti additio	on
31) Which of the followi	ng decreases on dilution?		
a) conductance	b) specific conductance	c) equivalent conductance	d) molar
conductance			
32) The electrode at which	h oxidation takes place with	respect to SHE will have a	sign in
electrochemical series:			
a) + (positive)	b) – (negative)	c) \pm (positive or negative)	d) none of the above
33) The debye huckel ons			
	b) $\Lambda_{m}^{c} = \Lambda_{m}^{0} + A\sqrt{C}$		$d) \Lambda^0_{m} = \Lambda^c_{m} + A\sqrt{C}$
34) The emf of the cell: ($Cd \mid Cd^{2+} (0.001M) \parallel Fe^{2+} (0.66)$	(M) Fe at 25 $^{\circ}$ C is:	
a) 0.441 V	b) 0.0441 V	c) 0.221 V	d) 0.0221 V
		ic acid is (Given Λ^0 values: H	ICl = 425, NaCl = 188
	ues in units of S cm ² mol ⁻¹)		
a) 300	b) 323	c) 333	d) 343

		e reaction: $Zn + Cu^{2+} \rightleftharpoons Cu + Z$	Zn^{2+}
(Given: $E^0_{Zn2+/Zn} = -0.76$,	$E^{0}_{Cu2+/Cu} = +0.34, F= 96$	5000)	
a) 112.3kJ	b) 312.3kJ	c) 412.3kJ	d) 212.3kJ
37) In conductometric titr	rations, the electrical conduc	ctance depends on	of ions:
a) number	b) mobility	c) both a) & b)	d) charge
38) The function of Photo	system I is to:		
a) oxidise water to molecular oxygen		b) produce two moles of ATP	
c) check the inflow and	d outflow of oxygen	d) reduce CO ₂ to carbohyo	drate
39) The active site of enz		•	
	b) Mo ²⁺	c) Cu ²⁺	d) Zn ²⁺
40) LADH is a	type of enzyme:	,	•
	b) oxido-reductase	c) hydrolases	d) catalyses
41) The main function of	myoglobin is:	, •	, •
, and the second	• •	ygen c) absorbing of iron	d) electron carrier
•	n superoxide dismutase is:		,
a) Cu & Zn		c) Mg & Mn	d) Mn & Cu
43) A negative catalyst	, ,	, 2	,
a) raises the potential e	energy barrier	b) lowers the potential en	ergy barrier
c) doesn't alter the pot		d) none of the above	
44) Colloidal solutions ha		,	
a) <1nm	b) 1-100nm	c) 100-1000nm	d) 1000nm<
,	ed under colloids:	2) 200 2002	.,
		c) associated	d) dissociated
· ·	*	se and dispersion medium are	, , , , , , , , , , , , , , , , , , ,
	b) liquid & gas		
-	ction takes place by the abs	_	a) gas & sona
a) UV-Visible	b) IR radiation	=	d) heat energy
,	<i>'</i>	eaction but itself doesn't und	,
change is called:	i initiate a photoenemical i	dection but itself doesn't una	ergo uny enemicar
a) catalysis	b) fluorescence	c) sensitizer	d) inhibitor
•	· ·	in saturated aldehydes and ke	*
a) $\sigma \rightarrow \sigma^*$	b) $n \rightarrow \sigma^*$	c) $n \rightarrow \pi^*$ and $\pi \rightarrow \pi^*$	d) only $\pi \to \pi^*$
,	s soon as incident light is cu	,	a) only h / h
a) fluorescence	b) phosphorescence	c) chemiluminescence	d) bioluminescence
a) Huorescence	o, phosphorescence	c) cheminalinicscence	a) biolumnicscence